
Reinforcement Learning-based

Rescheduling of Microservice

Architecture Applications in the

Cloud-Edge Continuum

by Xu Bai
Student Number: 1374321

Supervised by

Dr. Tawfiq Islam, Assoc. Prof. Adel N. Toosi and Prof. Rajkumar

Buyya

A thesis submitted in total fulfillment for the

degree of Master of Computer Science

in the

School of Computing and Information Systems

Faculty of Engineering and IT

THE UNIVERSITY OF MELBOURNE

October 2024

THE UNIVERSITY OF MELBOURNE

Abstract

School of Computing and Information Systems

Faculty of Engineering and IT

Master of Computer Science

by Xu Bai

The rapid expansion of Internet of Things (IoT) applications has led to increased demand

for low-latency processing, a requirement often unmet by traditional centralized cloud

computing due to their inherent latency limitations. Edge computing mitigates this

issue by placing computational resources closer to end-users, thereby reducing latency;

however, it encounters constraints in computational capacity. The cloud-edge continuum

architecture addresses these limitations by creating a cloud-edge hybrid environment.

Within the cloud-edge continuum, Microservice Architecture (MSA) is increasingly fa-

vored, as it decomposes applications into independent, loosely coupled services that can

be strategically deployed across both cloud and edge. Yet, the diverse and heteroge-

neous nature of resources within this environment presents significant challenges for

optimal MSA placement to achieve low end-to-end latency. This thesis proposes a novel

rescheduling algorithm specifically designed to optimize microservice placement within

cloud-edge continuum by adaptively adjusting service placement in real-time. The algo-

rithm employs a reinforcement learning-based approach to develop a rescheduling policy

by interacting with the cloud-edge continuum environment, learning the intricate pat-

terns of service invocation and heterogeneous resource availability in hybrid cloud-edge

settings. The proposed rescheduling algorithm undergoes extensive evaluation on a real-

world testbed. Compared to baseline algorithms, it demonstrates a significant reduction

in average end-to-end latency by 7.8%, 11.4%, and 8.8% across three benchmark MSA

applications during node failure scenarios. In these scenarios, it also shows impressive

results in decreasing latency fluctuations and spikes due to changes in resource avail-

ability.

Declaration of Authorship

I, Xu Bai, declare that this thesis titled, “Reinforcement Learning-based Rescheduling

of Microservice Architecture Applications in the Cloud-Edge Continuum.” and the work

presented in it are my own. I confirm that:

■ this thesis does not contain any material previously submitted for a degree or

diploma at any institution without proper acknowledgment. This thesis, to the

best of my knowledge, includes no material previously published or authored by

another individual without appropriate citation within the text.

■ this thesis did not require clearance from the University’s ethics committee.

■ this thesis is approximately 28000 words in length, excluding text in figures, tables,

code listings, bibliographies, and appendices.

Signed: Xu Bai

Date: 31 October 2024

ii

Preface

The sections 3.1 and 3.2, which review the related works on modeling the Cloud-Edge

Continuum and Microservice Architecture (MSA) applications, are adapted from the

research proposal completed as part of the requirements for the Master of Computer

Science degree.

All content I contributed to this thesis underwent independent review by my supervi-

sors, Dr. Tawfiq Islam, Associate Prof. Adel N. Toosi and Prof. Rajkumar Buyya.

Their guidance and feedback, received at various stages during the thesis creation, were

incorporated into the final document.

Publications

Title Author Venue Status

Reinforcement Learning-based

Rescheduling of Microservice

Architecture Applications in the

Cloud-Edge Continuum.

Xu Bai,

Tawfiq Islam,

Adel N. Toosi,

Rajkumar Buyya

IEEE Transactions on

Parallel and Distributed

Systems

In Submission

iii

Acknowledgements

First and foremost, I would like to extend my heartfelt gratitude to my primary super-

visor, Dr. Tawfiq Islam, who has guided me throughout my master’s journey. From

helping me define the research topic to identifying key directions, Dr. Islam has always

been approachable and supportive, encouraging me to ask questions freely and answer-

ing them with patience and expertise. His detailed reviews and feedback were invaluable

in ensuring I completed this thesis before the deadline.

I am also profoundly thankful to my co-supervisor, Assoc. Prof. Adel N. Toosi, for his

insightful guidance on my research methodology and experimental approach. He has

been exceptionally generous in offering advice, both on research and career planning,

which helped clear many uncertainties along the way. This thesis has greatly benefited

from his constructive suggestions.

My deepest appreciation also goes to my co-supervisor, Prof. Rajkumar Buyya, who

provided critical insights and directions. Through discussions on my research objectives

and future planning, he helped me refine my research goals and offered advice that was

instrumental in shaping the course of this work.

I feel truly fortunate to have had the support of these three supervisors during my

master’s degree journey.

Lastly, I am grateful to my family and friends for their unwavering support, which has

been my greatest source of strength. A special thanks to my girlfriend, who stood by

me through the most challenging times.

iv

Contents

Abstract i

Declaration of Authorship ii

Preface iii

Acknowledgements iv

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Objectives and Contributions . 3

2 Background 5

2.1 Cloud-Edge Continuum . 5

2.1.1 Cloud Computing . 5

2.1.2 Edge Computing . 6

2.1.3 Cloud-Edge Continuum . 7

2.2 Microservice Architecture Application . 8

2.2.1 Scalability and Fault Tolerance . 8

2.2.2 Network Topology . 9

2.2.3 Microservice Application Placement Problem in Cloud-Edge Con-
tinuum . 11

2.3 Container Orchestrator . 11

2.3.1 Overview . 11

2.3.2 Kubernetes . 12

2.3.3 Microservice Architecture Application Placement in Kubernetes . 14

3 Related Works 16

3.1 Modeling Cloud-Edge Continuum Environments 16

3.1.1 Compute Resource Modeling . 16

3.1.2 Network Modeling . 17

3.2 Microservice Placement Problem . 18

3.2.1 Microservice Invocation Patterns 19

v

Contents vi

3.2.2 Microservice Application Placement Objectives 19

3.3 Microservice Scheduling Algorithms . 20

3.3.1 Heuristics and Optimization Approaches 20

3.3.2 Reinforcement Learning (RL) Approaches 22

3.3.3 Summary . 23

4 Problem Formulation and RL-based Rescheduling Algorithm Design 25

4.1 System Model . 25

4.1.1 Application Model . 27

4.1.2 Cloud-Edge Continuum Model . 29

4.2 Problem Formulation . 31

4.3 Reinforcement Learning (RL) Model . 34

4.4 RL-based Rescheduling Algorithms . 41

4.4.1 Deep Q-Learning . 41

4.4.2 Proximal Policy Optimization . 42

4.4.3 Handling Invalid Rescheduling Actions 44

5 System Implementation 45

5.1 Microservice Architecture Application . 46

5.2 RL Environment Design and Implementation 48

5.2.1 The Proposed Reinforcement Learning Environment 49

5.2.1.1 Profiling Data From Real-Word Environment 52

5.2.1.2 Custom Configurations of CEEnv 52

5.2.1.3 Simulating MSA Application End-To-End Latency 53

5.3 RL Agent Training . 55

5.4 Rescheduling Plugin . 57

5.4.1 Rescheduling-Controller . 59

5.4.2 Rescheduling-Planner . 59

5.4.3 Rescheduling-Operator . 60

5.4.4 Pod rescheduling in Kubernetes . 61

5.5 MSA Application Profiler . 62

5.5.1 Profiling Data for CEEnv . 62

5.5.2 Latency Monitoring for rescheduler 63

6 Performance Evaluation 65

6.1 Convergence of the RL Agents . 66

6.2 Baseline Algorithms . 68

6.3 Cluster Setup . 69

6.3.1 Virtual Machine (VM) Setup . 69

6.3.2 Configurations for Cloud-Edge Continuum Testbed 71

6.4 Metrics . 72

6.5 Experimental Settings . 73

6.5.1 End-To-End Latency Experiment Settings 73

6.5.2 Node Failure Experiment Settings 75

6.6 Results . 76

6.6.1 Evaluation of End-to-End Latency 76

6.6.1.1 Rescheduling Algorithms Overhead 79

Contents vii

6.6.2 Service Execution Time . 79

6.6.2.1 Chain . 80

6.6.2.2 Aggregator-Parallel . 81

6.6.2.3 Aggregator-Sequential . 82

6.6.3 Evaluation of Pod Distributions . 84

6.6.3.1 Chain . 84

6.6.3.2 Aggregator-Parallel . 87

6.6.3.3 Aggregator-Sequential . 89

6.6.4 Evaluation of Adaptability to Cluster Dynamic Changes 91

6.6.4.1 Chain . 92

6.6.4.2 Aggregator-Parallel . 94

6.6.4.3 Aggregator-Sequential . 96

7 Conclusions and Future Directions 99

7.1 Overview . 99

7.2 Contributions . 100

7.3 Future Work . 101

List of Figures

1.1 Architecture of Cloud-Edge Continuum 2

2.1 Cloud-Edge Continuum Architecture . 7

2.2 MSA Application Example . 9

2.3 Invocation Patterns of MSA Application 10

2.4 Microservice With Different Invocation Order 10

2.5 Kubernetes Architecture . 13

2.6 Microservice Placement by Autoscaler and Scheduler 15

4.1 System Architecture . 26

4.2 Latency Difference of Same Service . 31

4.3 Interaction Between RL Agent And Environment 36

4.4 Example of State Transitions in Proposed RL Model 40

5.1 Workflow of the implemented system. First, we construct a benchmark
MSA application and collect profiling data in a real-world testbed. This
data is then used to train an RL agent in the CEEnv simulation environ-
ment. Finally, the trained agent is deployed via the rescheduling plugin
and evaluated in the testbed. 46

5.2 Constructed benchmark MSA applications with varying service invocation
patterns and orders. In Chain, services call each other sequentially. In
Aggregator-Sequential, the Front-End service calls ML, DB, and Back-
End services in sequence, while in Aggregator-Parallel, the Front-End
calls ML and Back-End services in parallel. 47

5.3 Architecture of CEEnv. The outer layer provides the interface used by the
RL agent framework to train RL agents. CEEnv includes the ce-simulator
component, which manages the data structures for the cloud-edge contin-
uum resources and the MSA application, including its invocation pattern. 50

5.4 Structure of IKVGraph, which includes 4 services in a graph structure . 54

5.5 Overall architecture of the rescheduling plugin, consisting of three main
components: the Rescheduling Controller, which continuously monitors
application and cluster states; the Rescheduling Planner, which gener-
ates rescheduling plans based on observed states; and the Rescheduling
Operator, which executes the rescheduling actions. 58

5.6 The MSA application span data generated by Jaeger. It includes the
execution time of each service along the calling path. 64

viii

List of Figures ix

6.1 Convergence of accumulated rewards for PPO and DQN agents on Aggregator-
Parallel, Aggregator-Sequential, and Chain application workloads. The
PPO agent demonstrates faster convergence in accumulated rewards com-
pared to the DQN agent. 67

6.2 Average episode length of PPO and DQN agents on Aggregator-Parallel,
Aggregator-Sequential, and Chain application workloads. The converged
average episode length for PPO exceeds that of DQN, indicating a more
explorative policy in performing rescheduling actions. 67

6.3 Comparison of end-to-end latency across three MSA applications. PPO
consistently outperforms baseline algorithms in the 12 and 20 pod con-
figurations. In lower pod settings, PPO also closely matches the best
heuristic approaches. 78

6.4 Execution time of Front-End, Back-End, ML, and DB services in Chain
across different algorithms. Each service’s execution time contributes to
the overall end-to-end application latency. 81

6.5 Execution time of Front-End, Back-End, ML, and DB services in Aggregator-
Parallel across different algorithms. Each service’s execution time con-
tributes to the overall end-to-end application latency. 82

6.6 Execution time of Front-End, Back-End, ML, and DB services in Aggregator-
Sequential across different algorithms. Each service’s execution time con-
tributes to the overall end-to-end application latency. 83

6.7 Pod distribution of Chain application services placed by different algo-
rithms across three node types (Cloud-A, Edge-A, Edge-B). The proposed
PPO algorithm tends to schedule the Front-End on Edge-A nodes, ML
and DB services on Cloud-A nodes, and distributes the Back-End service
more evenly across all node types. 86

6.8 Chain application placement generated by PPO. The right side shows
the Chain application’s invocation pattern for reference. The PPO policy
tends to place the heavy-lifting ML task and its related DB services on
cloud nodes, while keeping lightweight tasks on the edge layer. 87

6.9 Pod distribution of Chain application services placed by different algo-
rithms across three node types (Cloud-A, Edge-A, Edge-B). Compared to
baseline methods, PPO places all ML and DB services on Cloud-A nodes,
while distributing the Front-End and Back-End services across edge nodes. 88

6.10 Aggregator-Parallel application placement generated by PPO. The right
side shows the application’s invocation pattern for reference. Similar to
the Chain application pattern, the PPO policy places the heavy-lifting
ML task and its associated DB service on cloud nodes, while keeping
lightweight tasks on the edge layer. 89

6.11 Pod distribution of Aggregator-Sequential application services placed by
different algorithms across three node types (Cloud-A, Edge-A, Edge-
B). Compared to baseline methods, PPO places Front-End, Back-End,
and DB primarily on edge nodes, while assigning the computationally
intensive ML tasks to cloud nodes. 90

6.12 Aggregator-Sequential application placement generated by PPO. The right
side shows the application’s invocation pattern. In this case, as the Front-
End server sequentially calls ML, DB, and Back-End, PPO makes a best
effort to place all tasks except ML on edge nodes, yielding significant
results in reducing end-to-end latency. 91

List of Figures x

6.13 Latency trends for Chain across algorithms. Rescheduling events are
marked with yellow triangles in PPO and DQN, and node failures are
marked with orange pentagons across all algorithms. Each sub-graph
shows PPO’s latency as a blue dashed line, comparing its average latency
to each algorithm’s average (red dashed line). PPO outperforming all
algorithms overall, effectively reducing fluctuations and eliminating spikes. 92

6.14 Latency trends for Aggregator-Parallel across algorithms. In the reschedul-
ing algorithms PPO and DQN, rescheduling events are marked with yellow
triangles, and node failures are marked with orange pentagons across all
algorithms. Each sub-graph shows PPO’s latency as a blue dashed line,
comparing its average latency to each algorithm’s average (red dashed
line). PPO outperforming all algorithms, effectively reducing fluctuations
and eliminating spikes. 95

6.15 Latency trends for Aggregator-Sequential across algorithms. In the reschedul-
ing algorithms PPO and DQN, rescheduling events are marked with yellow
triangles, and node failures are marked with orange pentagons across all
algorithms. Each sub-graph shows PPO’s latency as a blue dashed line,
comparing its average latency to each algorithm’s average (red dashed
line). PPO outperforming all algorithms, effectively reducing fluctuations
and eliminating spikes. 97

List of Tables

3.1 Comparative Analysis of Related Works 24

4.1 Symbol Table for System Modeling . 28

5.1 Microservice Configuration . 48

6.1 Hyper-Parameters For DRL Agents . 66

6.2 Testbed Virtual Machines Specifications 69

6.3 Benchmark MSA Applications with Different Settings 73

xi

Chapter 1

Introduction

Cloud computing has transformed information technology with its scalable service mod-

els, diverse resource offerings, and cost advantages over traditional infrastructures [1].

However, the rapid expansion of Internet of Things (IoT) devices has heightened the

demand for low-latency applications, revealing the limitations of centralized cloud data

centers, which often struggle to meet strict latency requirements [2]. In response, edge

computing has emerged as a complementary paradigm. By positioning computing nodes

closer to end-users, edge computing facilitates the rapid processing and analysis of data

near its source, significantly reducing latency and enhancing application responsiveness

[3]. Despite the low-latency benefits of edge nodes, they typically possess limited com-

puting power compared to cloud data centers. The cloud-edge continuum architecture

has been proposed to leverage the advantages of both cloud and edge computing, inte-

grating these resources into a unified framework [4]. As illustrated in Figure 1.1, a typical

cloud-edge continuum consists of two layers: the cloud layer, often provided by public

platforms such as AWS or Google Cloud, and the edge layer, comprising on-premise

devices located near end-users. These layers collaborate to ensure that deployed appli-

cations meet Quality of Service (QoS) requirements, balancing the cloud’s vast resources

with the low-latency benefits of edge devices. Applications deployed in the cloud-edge

continuum are increasingly adopting the microservice architecture (MSA) model [5],

which has emerged as a popular modular development approach. MSA breaks down

software functionalities into independent, loosely coupled services that communicate via

network protocols [6]. Coupled with container virtualization technologies like Docker 1

and container orchestration platforms such as Kubernetes 2, MSA enables the flexible

placement of these services across heterogeneous cloud and edge resources.

1https://www.docker.com/
2https://kubernetes.io/

1

Introduction 2

VMtype2 VMtypeNVMtype1

Cloud Layer

IoT Devices

Fog Layer

Fog Node 1 Fog Node 2 Fog Node N

Smart
Phone

Laptop
Device

Figure 1.1: Architecture of Cloud-Edge Continuum

Since each service in an MSA application can have distinct computational and latency

requirements, they can be strategically placed on different nodes within the cloud-edge

continuum to optimize performance [7]. For instance, latency-sensitive services can be

deployed on edge nodes to provide fast response times, while compute-intensive tasks can

be offloaded to cloud nodes with greater processing capacity. This makes the placement

of MSA services critical in effectively harnessing the low-latency advantages of edge

resources and the high computational power of cloud resources. Consequently, there

is growing research interest in developing efficient MSA placement strategies that can

maximize the benefits of both cloud and edge layers in the cloud-edge continuum. The

MSA application placement problem in the cloud-edge continuum has proved to be

challenging due to both the complicated service invocation patterns and heterogeneous

computing resources in the cloud-edge continuum [8].

Existing literature overlooks the complexities of invocation patterns in microservices,

which involve intricate dependencies and demand precise orchestration to achieve opti-

mal performance and low latency. Furthermore, the heterogeneous nature of computing

resources—from high-capacity cloud servers to resource-limited edge devices—adds ad-

ditional layers of complexity to the decision-making process for effective microservice

deployment. This gap underscores the need for innovative approaches, particularly

those utilizing machine learning-based rescheduling techniques. By applying learning

Introduction 3

algorithms, systems can dynamically adapt to fluctuating workloads and complex ser-

vice interactions, optimizing resource allocation, enhancing overall system performance,

and effectively managing the challenges inherent in the cloud-edge continuum.

1.1 Objectives and Contributions

To tackle the challenges identified, we propose MSA application rescheduling algorithms

aimed at optimizing the end-to-end latency of MSA applications. Our approach models

the heterogeneous computing resources across the cloud-edge continuum. The end-to-

end latency is determined by both network delays and the execution times of all services

involved in handling user requests. Our model evaluates these factors by differentiating

the execution times of services running on different types of computing resources, while

also considering the network latency of edge and cloud layers.

We formulate the placement problem as a rescheduling challenge. Most recent studies

like [9–11] treat microservice architecture (MSA) placement as a one-time scheduling

task, where services are deployed based on the system’s state at a specific moment

and then run unchanged until their lifecycle ends. This initial placement lacks ongoing

control over the services’ lifecycle. However, in the cloud-edge continuum, computing

resources are in constant flux: services scale in real-time, new edge devices connect to the

network, and cloud nodes are added or removed based on current resource utilization. In

such a dynamic environment, one-time placement decisions may fail to maintain consis-

tent service quality throughout the services’ lifecycle. On the other hand, rescheduling

every service in an MSA application from scratch for every system change is both costly

and disruptive. To address this, we propose a rescheduling algorithm that continu-

ously monitors the state of the cloud-edge environment and incrementally reschedules

microservices with minimal steps. This approach minimizes application downtime and

prevents unnecessary disruptions. We argue that our method is more resilient than

traditional placement schemes. Furthermore, the proposed rescheduling algorithm inte-

grates seamlessly with Kubernetes, working in tandem with its autoscaler to optimize

microservice placement performance.

Therefore, this thesis addresses to following research questions:

• Research Question 1: How can we design MSA application rescheduling algo-

rithms that effectively optimize end-to-end latency for delay-sensitive applications

deployed in the cloud-edge continuum, considering the challenges posed by het-

erogeneous resources, intricate MSA network topology, and dynamic changes in

resource availability?

Background 4

• Research Question 2: How can we utilize reinforcement learning (RL) to im-

plement a dynamic rescheduling mechanism that adapts to real-time changes in

the cloud-edge environment, while minimizing rescheduling overhead and ensuring

long-term optimal placement of microservices?

In summary, our key contributions include:

• We developed a novel MSA rescheduling algorithm that dynamically resched-

ules microservices, maintaining application performance when cluster availability

changes.

• We applied a reinforcement learning-based approach to devise a rescheduling pol-

icy mindful of complex microservice topologies and heterogeneous cloud-edge re-

sources.

• We developed a Reinforcement Learning (RL) model with a reward design tailored

for minimizing end-to-end latency, aimed at maximizing long-term performance.

• We designed and implemented a custom RL simulation environment that models

heterogeneous computing resources and network conditions, reflecting real-world

cloud-edge continuum scenarios.

• We integrated the proposed rescheduling algorithm into a real-world Kubernetes

testbed, showing substantial improvements over baseline methods in reducing end-

to-end latency, minimizing request latency fluctuations, and preventing latency

spikes under node failure conditions.

Chapter 2

Background

In this chapter, we begin by outlining the development trajectory of the Cloud-Edge Con-

tinuum in Section 2.1. Following this, Section 2.2 introduces the concept of Microservice

Architecture (MSA) applications, highlighting their modular and scalable nature. We

further examine the MSA application placement problem, a critical aspect that deter-

mines how effectively these applications are deployed across cloud and edge resources to

optimize performance and resource utilization. Lastly, Section 2.3 provides an overview

of container orchestrators, key tools that facilitate the efficient scheduling, scaling, and

management of MSA applications in Cloud-Edge Continuum.

2.1 Cloud-Edge Continuum

2.1.1 Cloud Computing

Over the past few decades, the landscape of computing architectures has undergone

significant transformations, driven by exponential growth in data generation, the need

for scalable processing power, and the demand for low-latency applications. Initially,

companies and organizations deployed their applications or services on monolithic com-

puting machines [12]. With advancements in computer technology, the processing ca-

pabilities of single machines increased exponentially, as predicted by Moore’s Law [13].

The processing power of individual CPUs continuously improved, and the emergence of

multi-core processors further enhanced computational capacity. For a time, applications

deployed on single machines sufficed for most computational tasks and service demands.

However, as computational tasks grew increasingly complex, single-machine processing

power became insufficient for handling intricate computational tasks.

5

Background 6

In response to these limitations, Grid Computing was proposed [14], leveraging multiple

machines with relatively low computing power to perform large-scale data processing

and scientific computations. However, Grid Computing is primarily utilized by research

communities for complex scientific computing. The emergence of Cloud Computing is

changing this landscape [12]. Similar to Grid Computing, Cloud Computing utilizes

multiple machines collectively for computational tasks. However, Cloud Computing,

unlike Grid Computing, has a broader range of applications from lightweight application

service deployment to heavy computational batch jobs.

In Cloud Computing, a vast pool of computational resources is centrally managed by

public cloud providers like Google or Amazon through robust cloud management plat-

forms, such as OpenStack 1. Utilizing virtualization technology, public cloud providers

are able to isolate and allocate computing resources to various users. This centralization

offers several key advantages: users avoid the financial burden of purchasing and main-

taining physical hardware, paying instead only for the computing time they consume,

resulting in significant cost savings. Additionally, cloud resources are highly scalable, al-

lowing users to seamlessly adjust resource allocation based on fluctuating workloads [1].

This flexibility enables quicker deployment of applications and services, making Cloud

Computing both accessible and adaptable to varying computational demands.

2.1.2 Edge Computing

As Cloud Computing continues to develop, its shortcomings are becoming apparent. For

applications requiring real-time processing and low latency, the inherent delay in trans-

mitting data to centralized cloud servers can be problematic. Furthermore, in cases like

autonomous vehicles, healthcare IoT, and augmented reality, the data generated is mas-

sive, incurring severe bandwidth pressure on the backbone network when transmitting

such data to cloud computing nodes [3].

Edge computing has emerged as a complementary paradigm, positioning computing

resources closer to end-users to address the latency and bandwidth issues associated

with centralized cloud computing. In this model, user applications are primarily hosted

on edge nodes, leveraging their proximity to reduce latency and enhance response times.

By routing all network traffic directly to these edge nodes, edge computing minimizes

latency and alleviates potential bandwidth congestion between cloud resources and end-

users. Here, cloud nodes function primarily as control units, overseeing the management

of edge nodes and gathering metrics and analytical data rather than directly hosting

applications.

1https://www.openstack.org/

Background 7

VMtype2 VMtypeNVMtype1

Cloud Layer

Edge Layer

Edge Node 1 Edge Node 2 Edge Node N

Figure 2.1: Cloud-Edge Continuum Architecture

2.1.3 Cloud-Edge Continuum

Even though edge computing offers low-latency service hosting close to end-users, its

computing resources are often constrained. In self-hosted scenarios, for instance, edge

nodes possess significantly lower computational power compared to cloud nodes, limit-

ing their ability to manage computationally intensive tasks effectively [4]. To capitalize

on the strengths of both cloud and edge computing, the Cloud-Edge Continuum has

emerged as an integrated architecture that leverages the capabilities of both to achieve

optimal performance. As illustrated in Figure 2.1, this architecture comprises two prin-

cipal layers: the cloud layer, which hosts cloud computing resources, and the edge layer,

which accommodates all edge resources. Unlike traditional edge computing, where cloud

nodes primarily function as control nodes without directly hosting user applications, the

Cloud-Edge Continuum allows cloud nodes to also serve as computing nodes that can

execute user applications [4].

By seamlessly distributing workloads between centralized cloud data centers and de-

centralized edge nodes, the continuum addresses the diverse requirements of modern

applications. However, the placement of applications in the Cloud-Edge Continuum

raises challenges. Due to the heterogeneous computing resources in the cloud and edge

layers, the placement of applications onto specific nodes in the continuum can signifi-

cantly impact end-user latency, costs, and network usage [7]. In this work, we will delve

into the application placement problem, more specifically, the Microservice Architecture

Application (MSA) placement problem in the cloud-edge continuum.

Background 8

2.2 Microservice Architecture Application

As the software industry continues to evolve, software architectures are also undergoing

significant development. In the early stages of the software industry, most applications

were deployed as monoliths, meaning that all functional components and business logic

were contained within a single, tightly integrated system. However, this architecture

often led to high coupling between internal components, resulting in difficulties in soft-

ware maintenance and significant overhead when developing new features compatible

with existing ones [15]. Moreover, monolithic applications typically cannot scale com-

puting resources for specific modules; scaling must occur at the application level, which

reduces flexibility and scalability.

To address the shortcomings of monolithic applications, Microservice Architecture (MSA)

has gained substantial adoption [16]. Compared to traditional monolithic applications,

an MSA application decomposes each module into a collection of loosely coupled ser-

vices, each responsible for a specific functionality such as user authentication, data

processing, or web front-end services. These services are independent, enabling teams

to develop, test, and deploy each service in isolation, often using different technologies

or programming languages based on the needs of the service [17].

2.2.1 Scalability and Fault Tolerance

Figure 2.2 illustrates an example of a healthcare Microservice Architecture (MSA) ap-

plication used for gathering and analyzing patient data [18], often deployed within the

Cloud-Edge Continuum. In this example, the application’s functionality is distributed

across three intercommunicating microservices. The patient’s vital sign data, generated

by IoT devices, is first sent to a data compression service, which reduces the data size for

more efficient transmission and storage. The compressed data is then forwarded to two

distinct services: a machine learning service for long-term analytics and an emergency

service for real-time anomaly detection in patient conditions. Each of the services in

this MSA application has two replicated instances for load balancing and fault tolerance

purposes.

As demonstrated in the example MSA application, each microservice can scale to multi-

ple instances to adapt to fluctuating workloads. Moreover, they can be distributed across

different computing nodes to enhance the application’s fault tolerance. The advantages

of utilizing multiple replicas are twofold. First, it significantly enhances the system’s

Background 9

Figure 2.2: MSA Application Example

capacity to handle varying levels of throughput. In modern software deployment plat-

forms like Kubernetes 2, MSA applications can leverage auto-scaling mechanisms [19]

that dynamically adjust the number of service replicas based on demand. For instance,

when IoT data in the example healthcare application surges, the platform automatically

scales up by adding replicas to accommodate the increased load. Conversely, during

periods of low demand, the number of replicas is reduced to conserve resources, thereby

optimizing system efficiency.

Second, employing multiple replicas reduces the risk of a single point of failure [19]. If

one replica of a service fails, others can continue to operate without disrupting the overall

application, ensuring high availability and reliability. In summary, the modular nature of

MSA not only provides flexibility in adapting to dynamic workloads but also enhances

resilience to failures, making it a highly robust architecture for modern distributed

systems.

2.2.2 Network Topology

Although the modularity of Microservice Architecture provides significant flexibility and

availability, it also introduces substantial complexity, particularly in terms of increased

network invocations between services [15]. This presents a critical challenge in opti-

mizing MSA application performance. Services in an MSA application communicate

with each other using network protocols such as HTTP 3, WebSocket 4, or gRPC5 to

collaboratively process a user request. The invocation patterns in MSA applications

are highly diverse. Figure 2.3 illustrates three common MSA network topologies: the

”chain” pattern, where one service invokes another sequentially—often seen in batch

2https://kubernetes.io/
3https://datatracker.ietf.org/doc/html/rfc2616
4https://datatracker.ietf.org/doc/html/rfc6455
5https://grpc.io/

Background 10

Figure 2.3: Invocation Patterns of MSA Application

Figure 2.4: Microservice With Different Invocation Order

processing tasks; the ”aggregator” pattern, where a service calls multiple other services

and aggregates the results; and the ”Directed Acyclic Graph (DAG)” pattern, which in-

volves a more complex structure of services calling multiple external services to deliver

a response to the end user. In real-world workloads, the network topologies of MSA

applications can be far more intricate, often composed of different invocation patterns.

Another layer of complexity in MSA application arises from the order in which services

are invoked. Most modern MSA applications employ multi-processing or multi-threading

mechanisms to invoke services asynchronously, thereby increasing throughput [15]. Ser-

vices that do not depend on each other can be invoked in parallel, while those with

dependencies must be invoked sequentially. Figure 2.4 shows two MSA applications

with aggregator pattern, where the service invocation order of the aggregator service

differs. In MSA application 1, Service A invokes two external services in parallel. In

contrast, in MSA application 2, the invocation of Service F is dependent on the result

of Service E, requiring sequential invocation. The external latency of Service A in both

applications can be calculated as:

External Service Invoking TimeService A = max(LatencyService B,LatencyService C) (2.1)

External Service Invoking TimeService D = LatencyService E + LatencyService F (2.2)

This formula illustrates that in the parallel invocation case, the overall latency is de-

termined by the slower of the two parallel services, while in the sequential case, the

latencies accumulate additively. The complexity of service invocation patterns and their

execution order presents significant challenges when placing MSA application services,

especially in scenarios with stringent latency requirements. This challenge has moti-

vated the research community to explore strategies that minimize end-to-end latency

while preserving the modular advantages of MSA.

Background 11

2.2.3 Microservice Application Placement Problem in Cloud-Edge Con-

tinuum

The modularity of MSA applications makes them particularly well-suited for deployment

in cloud-edge hybrid environments. Each service in an MSA application can leverage the

heterogeneous characteristics of cloud and edge computing resources to optimize overall

application performance. However, as mentioned above, the placement of microservices

poses significant challenges due to the complex internal service invocation patterns. This

complexity is further amplified when deploying MSA applications within the cloud-edge

continuum, as the hybrid environment introduces heterogeneous computing resources

with varying capabilities and network conditions [10].

Depending on the optimization objectives—such as minimizing latency, maximizing re-

source utilization, or ensuring high availability—the MSA application placement strategy

must consider several factors: the availability and capacity of heterogeneous comput-

ing resources across cloud and edge nodes, the varying computational power of each

node, and the different latencies between cloud and edge nodes relative to end-users.

Additionally, the internal network topologies of MSA applications play a critical role in

determining optimal placement.

In this work, we capture the network topology of MSA applications by modeling both

the internal service invocation patterns and the external invocation orders—specifically,

services invoked in parallel or sequentially. Additionally, we model the heterogeneous

cloud and edge computing resources, considering critical factors such as network latency,

computational capacity, and resource availability, which will be thoroughly detailed in

Sections 4.1.

2.3 Container Orchestrator

2.3.1 Overview

Historically, deploying software across a cluster of heterogeneous computing nodes was

a challenging and resource-intensive task [12]. Computing nodes within a cluster could

run different operating systems, often requiring DevOps teams to manage complex de-

ployment scripts and tools to ensure software compatibility across various OS versions

and configurations. As virtualization machine technology emerged, A cluster of hetero-

geneous resources can run virtual machines with consistent operating systems, however,

traditional virtual machine techniques often incur high overhead due to simulating the

underlying hardware of the virtual machines.

Background 12

The emergence of container virtualization technology has transformed the landscape of

managing heterogeneous computing resources. A ”container” refers to an isolated en-

vironment used to run software, where all necessary dependencies, runtimes, and files

are packaged together. This approach allows applications to run on host machines

without installing the software’s dependencies, provided the host supports containeriza-

tion technology. Furthermore, container technology involves resource isolation without

hardware emulation, resulting in minimal overhead compared to running virtual ma-

chines. Consequently, container virtualization enables software to be easily deployed

across heterogeneous computing nodes. To achieve unified management of container

applications and clusters, several container orchestrators have been introduced. Fol-

lowing the release of container technology, Docker launched its container orchestrator

Docker Swarm 6. Mesos 7, a widely adopted distributed systems framework, also re-

leased its container orchestrator Marathon 8, which manages containers running over

Mesos clusters. Among these, the most widely adopted container orchestrator is Ku-

bernetes 9, originally initiated and developed by Google before becoming open source,

making it the most active container orchestrator project. Kubernetes natively supports

autoscaling, load balancing, and self-healing mechanisms for deployed containers, and

its modular design ensures great extensibility and customization, establishing it as the

de facto container orchestrator in the industry.

2.3.2 Kubernetes

Given these characteristics, Kubernetes has been widely adopted to orchestrate Mi-

croservice Architecture (MSA) applications within the cloud-edge continuum [7]. In a

Kubernetes-orchestrated cloud-edge environment, both cloud and edge nodes—despite

their diverse characteristics—are collectively managed as a unified cluster. Each mi-

croservice in an MSA application can be scheduled to any computing node with suffi-

cient available resources, whether in the cloud or at the edge. In addition to application

scheduling, Kubernetes provides features like autoscaling, self-healing, and load balanc-

ing, ensuring the scalability, resilience, and availability of applications.

Figure 2.5 illustrates the architecture of Kubernetes. Overall, Kubernetes comprises

two types of nodes: the control plane node and the worker nodes. The control plane

node maintains the cluster’s state, receives API calls from other nodes or end-users, and

performs application scheduling along with other control mechanisms. Worker nodes

primarily host pods, the smallest deployable units in Kubernetes that encapsulate one

6https://docs.docker.com/engine/swarm/
7https://mesos.apache.org/
8https://mesosphere.github.io/marathon/
9https://kubernetes.io/

Background 13

Figure 2.5: Kubernetes Architecture

or more containers. Within this client-server framework, several key components form

the architecture of Kubernetes:

API Server: The control plane that manages communication between all Kubernetes

components and responds to requests from the cluster manager.

Controller Manager: Manages various controllers running in the Kubernetes cluster.

The controllers monitor the state of the cluster and resources, ensuring they maintain

the desired state.

Scheduler: Allocates application workloads to appropriate nodes based on resource avail-

ability and user-defined policies. It plays a key role in application placement.

etcd: A distributed key-value store that stores essential cluster data and, in some cases,

application data, including configuration, state, and metadata.

Kubelet: A service running on each Kubernetes-managed node, responsible for ensuring

that containers are running as specified in the desired configuration.

The controller manager, scheduler, and API server are all deployed on the control plane

node, serving as the core orchestration components responsible for managing the entire

cluster. In contrast, the Kubelet is deployed on every worker node, ensuring that the

containers running on those nodes adhere to the specified configuration and continue to

operate as expected.

Background 14

2.3.3 Microservice Architecture Application Placement in Kubernetes

When deploying an MSA application in Kubernetes, a set of resources defined in YAML

files is used to specify the application’s deployment configuration. The smallest deploy-

able computing unit in Kubernetes is the Pod resource. A Pod itself is a container that

includes user-running code. Users can configure the required CPU and memory resources

for the pods and also set limits on pod resource usage. While Pods can be individually

deployed within a Kubernetes cluster, a Deployment resource can be defined to man-

age multiple replicated Pods, enabling load balancing and fault tolerance. Furthermore,

a Service resource can be defined to expose the Pods’ endpoints to other services or

external users. Any traffic directed to service-defined endpoints will be load-balanced

across the associated Pods. Pod, Deployment, and Service resources in Kubernetes

declaratively define the deployment of an MSA application, which directly determines

the placement of each MSA application component.

As discussed in Section 2.2.3, in the hybrid cloud/edge environment, the placement of

each microservice in an MSA application is crucial to ensure optimal application perfor-

mance. In Kubernetes, the Scheduler and Autoscaler jointly decide pod placement

on specific nodes.

Scheduler: The primary component responsible for MSA placement in the Kubernetes

cluster. Based on the underlying Deployment resource specified by users, the scheduler

follows a two-phase decision process to determine the appropriate target node for each

Pod in the Deployment. The first phase is the filtering process, during which comput-

ing nodes that cannot meet the Pod’s CPU or memory requirements are filtered out.

The second phase is the scoring process, where the scheduler assigns a score to each

candidate node based on a set of default Kubernetes rules and any user-defined custom

rules. The node with the highest score is selected as the target for the Pod deployment.

This two-step decision process ensures that Pods are placed on nodes with sufficient re-

sources while allowing for customizable placement policies tailored to specific workload

needs.

Autoscaler: In Kubernetes, the autoscaler dynamically adjusts the number of replica

pods in a Deployment based on metrics such as CPU or memory utilization, as well

as other customizable indicators. The autoscaler is responsible for making scaling de-

cisions and invoking the scheduler to place the pods accordingly. Figure 2.6 illustrates

the abstract autoscaling process carried out collaboratively by the autoscaler and sched-

uler. The autoscaler continuously monitors the CPU utilization of the running pod for

microservice MS1. When user requests increase, leading to a spike in pod CPU utiliza-

tion, the autoscaler initiates scaling and triggers the scheduler to deploy additional pods

Related Works 15

Figure 2.6: Microservice Placement by Autoscaler and Scheduler

within the cluster. The scheduler then allocates a new pod for MS1, thereby completing

autoscaling and ensuring that sufficient resources are available to handle the increased

workload.

Most existing studies [7, 9, 20, 21] focus on optimizing Microservice Architecture (MSA)

application placement during initial scheduling or through autoscaling processes. A key

observation regarding Kubernetes pod placement is that the scheduler’s decision is one-

off, which means that once a pod is placed on a node, it remains there until termination.

However, in the Cloud-Edge Continuum, resource availability can change dynamically

over time, potentially rendering an initially optimal microservice placement suboptimal

as conditions evolve. To address this issue, we propose a rescheduling algorithm that

extends the Kubernetes scheduler by enabling dynamic rescheduling of pods at runtime,

thereby continuously optimizing MSA application placement in response to changing

resource availability.

Chapter 3

Related Works

In this chapter, we begin by reviewing existing research on the modeling of cloud-edge

continuum environments in Section 3.1. In Section 3.2, we discuss the challenges and

complexities associated with the MSA placement problem in the cloud-edge continuum.

Subsequently, we examine the current state-of-the-art scheduling strategies employed to

address the MSA placement problem within the cloud-edge continuum in Section 3.3.

3.1 Modeling Cloud-Edge Continuum Environments

Modeling in the Cloud-Edge Continuum introduces greater complexity than in tradi-

tional cloud or edge computing environments, which typically includes a wide variety of

heterogeneous computing resources, differing in aspects such as computational power and

resource availability [5]. Additionally, the continuum spans devices distributed across

various locations, complicating network latency modeling and computing resources’ spa-

tial proximity within the cloud-edge continuum [22]. This section will review existing

studies on modeling heterogeneous computing resources and network conditions in the

Cloud-Edge Continuum.

3.1.1 Compute Resource Modeling

Computing resources within the cloud-edge continuum can be modeled at various levels

of abstraction, ranging from the physical server infrastructure to virtual machines pro-

vided by cloud providers, or even down to individual application containers. The latter

aligns with the pay-as-you-go paradigm, where the underlying infrastructure support-

ing containers is abstracted away from the user. Previous studies, such as [9, 23–25],

have focused on modeling physical servers within the edge layer to develop effective

16

Related Works 17

service placement strategies. However, these approaches often emphasize placement de-

cisions solely within the edge layer, treating cloud layers primarily as a control plane

for scheduling, rather than as active hosts for application components. This limited

scope can overlook the potential of cloud resources in dynamic, multi-layered service

placement strategies.

Conversely, research like [26–28] suggests that the cloud layer possesses virtually unlim-

ited computing resources, enabling edge nodes to offload computing tasks to the cloud.

This approach is designed to compensate for the edge’s relatively limited computational

capabilities. In these models, edge servers are characterized as nodes with constrained

resources but benefiting from low latency, whereas cloud servers are depicted as having

boundless computing resources but with higher latency. Such a model is particularly

well-suited for integrating edge nodes with cloud-provided services like Container as a

Service (CaaS) [29] or Serverless computing [30]. These services typically abstract the

underlying cloud infrastructure from developers, allowing the cloud layer to be perceived

as an infinitely scalable, pay-as-you-go computing resource. This abstraction simplifies

the deployment process and enhances scalability, making it a viable option for expanding

the capabilities of edge computing environments.

In studies such as [7, 31, 32], the Cloud-Edge Continuum environment is modeled as an

architecture that integrates self-hosted edge nodes with cloud nodes provided by cloud

service providers. The edge layer is conceptualized as a cluster of nodes specifically

engineered to host microservices with stringent low-latency requirements. In contrast,

the cloud layer is envisioned as another cluster of computing nodes with greater resource

availability and computing power. Within this model, computing nodes from both cloud

and edge environments are viewed as resources available for hosting applications, differ-

ing primarily in their computing capacity, resource availability, and network conditions.

By explicitly modeling the cloud and edge nodes in this manner, researchers can more

precisely optimize application performance based on the heterogeneity of computing

nodes across the cloud and edge layers. Therefore, in this work, we adopt this mod-

eling approach of the Cloud-Edge Continuum and design our scheduling algorithms to

optimize application placement on both cloud and edge nodes.

3.1.2 Network Modeling

The edge-cloud continuum features a highly complex network topology, where computing

nodes in both the edge and cloud layers are geographically dispersed and interconnected

through diverse network architectures [5]. The specific network conditions within this

Related Works 18

continuum can significantly influence the Quality of Service (QoS) of deployed appli-

cations. This impact is particularly pronounced for applications based on microservice

architectures (MSA), which typically involve numerous internal network interactions.

In such applications, the network conditions of the computing nodes hosting each ser-

vice can substantially affect the overall application performance, especially concerning

end-to-end latency. Therefore, modeling the network environment in the edge-cloud

continuum is crucial for scheduling algorithms aiming to optimize the performance of

MSA-based applications.

Existing research on the MSA application placement problem addresses Cloud-Edge

Continuum networking factors with varying degrees of detail. Some studies, such as

[33, 34], have not explicitly defined or considered the impact of networking factors,

potentially overlooking how network calls between services could influence both the

network environment and the services themselves. In contrast, works like [9, 35] have

included models of network connectivity between computing nodes, which is a step

towards understanding how computing nodes are organized within the network topology.

Furthermore, studies such as [7, 36] have considered the bandwidth of network links, an

important factor in network performance. By accounting for bandwidth usage between

edge nodes and the backbone network of the edge and cloud layers, application placement

strategies can schedule data-intensive applications closer to the edge. This approach can

mitigate the load on the backbone network, enhancing overall network efficiency.

Another important network parameter is the distance and latency of computing nodes

in the cloud and edge layers, which has been modeled in studies like [25, 28]. A key

characteristic of edge nodes in the cloud-edge continuum is their close proximity to end

users. Therefore, accounting for the different network latencies between cloud and edge

nodes is an important factor when optimizing the end-to-end latency of applications de-

ployed in the cloud-edge continuum. In this work, we model the cloud-edge continuum

network by differentiating the computing nodes’ latency to the end users, which facili-

tates our rescheduling algorithms to optimize the end-to-end latency of the underlying

MSA applications.

3.2 Microservice Placement Problem

Due to the modular design of Microservice Architecture (MSA) applications, individual

services can be independently hosted on different computing nodes within the cloud-edge

continuum. However, the placement of each microservice across heterogeneous cloud and

edge nodes can significantly influence the overall performance of the MSA application.

Related Works 19

Studies such as [9, 32, 37] have developed service placement policies tailored for indi-

vidual services, achieving improvements in latency, resource utilization, and energy con-

sumption. Nevertheless, this research primarily focuses on optimizing the performance

of individual services, thereby overlooking the complex internal network interactions in-

herent in MSA applications. In this section, we review current research addressing the

placement problem of MSA applications. We examine how existing studies address the

complicated microservice invocation patterns and define their optimization objectives to

enhance overall MSA application performance.

3.2.1 Microservice Invocation Patterns

One of the primary challenges in addressing the placement of MSA applications within

the cloud-edge continuum is accounting for the complex invocation patterns and data

flows among microservices. Research such as [23, 33, 36] has modeled microservices using

a chained structure to depict service interactions within MSA applications, characteriz-

ing data flow between services as linear. While this approach simplifies the representa-

tion of service dependencies, it may fail to accurately capture the intricate interactions

present in real-world applications. In contrast, studies like [7, 9, 26] employ Directed

Acyclic Graphs (DAGs) to provide a more detailed representation of data flows within

MSA architectures, accommodating non-linear service interactions. In such invocation

patterns, microservices can invoke multiple external microservices to execute service

tasks, thereby better reflecting the complex communication patterns inherent in mod-

ern microservice-based applications.

3.2.2 Microservice Application Placement Objectives

To address the placement problem of MSA application, several objectives can be defined,

which can be varied depending on the perspective taken in the research. Previous works,

such as [27, 38], prioritize enhancing resource efficiency for edge-cloud continuum service

providers, aiming to accommodate more application deployments. Similarly, studies like

[32, 39] emphasize energy consumption and cost reduction as key objectives in their

placement strategies. Additionally, research such as [35, 40] highlights bandwidth opti-

mization, particularly for data-intensive applications. By positioning these applications

closer to the edge, bandwidth requirements for transmitting data to remote cloud layers

can be significantly reduced.

Minimizing end-to-end application latency is one of the most critical placement ob-

jectives, particularly for applications in the cloud-edge continuum with strict latency

requirements [41]. Unlike traditional monolithic applications, where a user request is

Related Works 20

processed by a single service, MSA applications involve passing the request through

multiple microservices. This complexity necessitates accounting for both the execu-

tion time of individual services and the network latency when requests are transmitted

between them.

Research such as [23, 24] addresses this challenge by modeling MSA applications with

chain invocation patterns. In this model, the end-to-end application latency comprises

the sum of each service’s execution time and its internal network latency. However, in

practice, microservices often interact with multiple external services to handle a single

request rather than following a simple chain pattern. Therefore, studies like [28, 40]

model microservice application invocations as Directed Acyclic Graphs (DAGs). By

representing data invocations as DAGs, these studies account for the overall end-to-end

latency contributed by different data paths in a single request invocation, which more

accurately aligns with real-world MSA application scenarios.

Our research focuses on applications in the cloud-edge continuum with stringent latency

requirements, making the reduction of the end-to-end application latency our primary

objective. The proposed rescheduling algorithms model MSA applications using DAGs

and take into account multiple data paths to optimize the overall MSA application’s

end-to-end latency.

3.3 Microservice Scheduling Algorithms

3.3.1 Heuristics and Optimization Approaches

To address the MSA placement problem, many studies have utilized heuristics like com-

puting resource availability, application latency, and network bandwidth usage to gener-

ate MSA application placement plans Filip et al. [23] propose a heuristic-based schedul-

ing algorithm for microservices, where scheduling decisions are driven by the expected

service execution time as a heuristic. This approach aims to optimize service execution

within the constraints of heterogeneous computing resources. However, this model sim-

plifies the invocation patterns of MSA applications by assuming a linear chain structure,

which does not capture the complexities often present in real-world microservice appli-

cations. Moreover, their evaluation is limited to a simulated CloudSim environment,

which lacks the variability and intricacies of real-world cloud-edge continuum systems.

Guerrero et al. [28] adopt a heuristic that prioritizes the shortest path from the cloud

to computing nodes, rescheduling frequently invoking microservice closer to end-users

along this path to minimize latency. Although effective in reducing latency for individual

Related Works 21

services, this approach fails to account for complex multi-service interactions within MSA

applications, resulting in potentially suboptimal placement decisions. Furthermore, their

study is confined to a simulation, limiting its applicability to operational cloud-edge

environments.

Centofanti et al. [20] address the latency optimization challenge in MSA applications

through a latency-aware Kubernetes rescheduling process in a real-world Kubernetes

cluster. By leveraging a custom scheduler and de-scheduler, this method iteratively

reschedules microservice replicas to nodes with lower end-to-end latency. While effec-

tive, this approach optimizes only single-service latency, focusing narrowly on end-to-

end latency reduction without accounting for the broader invocation patterns of MSA

applications. Consequently, it risks making suboptimal placement decisions that may

overlook holistic application requirements.

In addition to heuristic approaches, optimization-based methods are frequently employed

to address MSA application placement challenges, often leveraging techniques such as

Mixed Integer Linear Programming (MILP) and Particle Swarm Optimization (PSO)

to address microservice placement problems with multiple objectives.

Herrera et al. [24] propose an optimization-based approach to address microservice

placement in edge computing environments. This approach utilizes MILP to formalize

and solve the combined placement of both computing nodes and microservices. However,

this approach solely models MSA applications with chain invocation patterns, which is

not able to capture more intricate microservice invocation patterns. Furthermore, its

validation within a simulated environment limits its applicability to complex, real-world

deployment scenarios.

Ying Xie et al. [21] introduce an enhanced Particle Swarm Optimization (PSO) algo-

rithm for MSA scheduling in cloud-edge contexts. PSO is a population-based optimiza-

tion technique inspired by natural swarm behavior [42]. This work adopts it to address

multi-objective requirements such as minimizing both cost and latency for MSA deploy-

ments. By dynamically allocating microservices between cloud and edge resources, this

approach optimizes for both objectives. However, the lack of real-world deployment

evaluation raises questions about its efficiency in practical cloud-edge environments.

Alelyani et al. [43] present a scheduling strategy focused on reducing application la-

tency by scheduling MSA service replicas close to their dependent services to minimize

network overhead. This method employs a modified PSO to optimize for latency reduc-

tion, primarily by emphasizing the proximity of service replicas. However, by focusing

only on proximity within isolated service pairs, this approach neglects the full scope of

Related Works 22

inter-dependencies between microservices, potentially resulting in suboptimal placement

configurations that do not achieve the lowest overall latency for the application.

3.3.2 Reinforcement Learning (RL) Approaches

Due to the complex and dynamic nature of microservice architecture (MSA) applica-

tion placement, reinforcement learning (RL) approaches have been increasingly applied

to address this challenge. Mampage et al. [33] propose a deep reinforcement learning

(DRL) model for container scheduling in multi-tenant, resource-constrained serverless

computing environments. Utilizing the Deep Q-Network (DQN) approach, they aim to

optimize application response time and provider cost efficiency by dynamically schedul-

ing containers to virtual machines (VMs) based on real-time resource demands. However,

since their work focuses on individual container scheduling, the interdependencies among

different containers are not addressed.

Jayanetti et al. [9] employ a proximal policy optimization (PPO) reinforcement learning

model to tackle the service scheduling problem in the cloud-edge continuum. Their

approach accounts for both energy efficiency and time optimization. They utilize a

hierarchical action space that first determines the layer of the cloud-edge continuum to

select and then decides the specific nodes for service scheduling. This method enhances

the convergence efficiency of the PPO agent. Nonetheless, their work concentrates on

single-service scheduling, rendering it incapable of addressing the placement of MSA

applications with intricate interdependencies among multiple services.

Lv et al. [38] introduce an RL-based microservice scheduling algorithm in edge comput-

ing, focusing on minimizing communication overhead and balancing load across nodes.

The proposed Reward Sharing Deep Q-Learning (RSDQL) enhances the efficiency of

the RL agent’s learning process. They model the MSA application as a directed acyclic

graph (DAG) to capture intricate request invocations. In their subsequent work [34], Lv

et al. further employ DRL as the scheduling algorithm to minimize deployment overhead

while maintaining the MSA application’s latency Quality of Service (QoS) constraints.

Additionally, they use a Graph Convolutional Network (GCN) to encode the call graphs

of MSA applications, improving the state representation quality for the reinforcement

learning agent. However, both works do not model heterogeneous computing resources

which limits them to being deployed in a cloud-edge continuum comprised of nodes with

varying computational capabilities.

Maia and Ghamri-Doudane [44] propose an RL scheduling approach for scalable mi-

croservices across the edge-to-cloud continuum. Their method addresses the multi-

objective problem of minimizing deployment costs and reducing application latency.

Related Works 23

The RL model iteratively schedules each service and employs heuristic methods for load

distribution. However, their work does not model heterogeneous computing resources

with varying computational power, limiting its applicability in the cloud-edge contin-

uum. Furthermore, their experiments are conducted solely in simulation environments,

which may not fully capture the complexities of real-world deployments.

Chen et al. [45] present a Multiple Buffer Deep Deterministic Policy Gradient (MB DDPG)

RL algorithm designed for microservice deployment in edge-cloud hybrid environments.

This algorithm aims to reduce the average waiting time for requests by adjusting de-

ployments in real time, considering both resource availability and device mobility. The

study effectively models the heterogeneous cloud-edge continuum, accommodating the

resource variability inherent in such environments. However, it assumes a linear chain in-

vocation pattern for the MSA application, which limits its adaptability to more complex

invocation patterns commonly found in real-world microservice applications.

3.3.3 Summary

Related work demonstrates that heuristic placement algorithms, such as those in [23, 28],

often rely on simple criteria like service latency and end-user proximity to derive place-

ment policies for Microservice Architecture (MSA) applications. However, these ap-

proaches fail to account for the complex invocation patterns of MSA applications and

the underlying heterogeneous computing resources in cloud-edge hybrid environments,

leading to potentially suboptimal placement decisions. Optimization-based scheduling

methods, like those in [21, 43], are capable of finding optimal microservice placements

under well-defined problem schemes. Yet, they require comprehensive and precise model-

ing of the edge-cloud continuum, and each placement decision involves solving complex

optimization problems, resulting in high computational overhead [46]. Consequently,

most optimization-based approaches are evaluated only in simulation environments and

lack real-world system results.

Alternatively, reinforcement learning has been successfully applied to MSA application

placement in several studies [34, 38]. However, its application in the cloud-edge con-

tinuum is limited; only a few works [45] have modeled the heterogeneous computing

resources in such environments, and these studies do not fully capture the intricate

invocation patterns, such as Directed Acyclic Graphs (DAGs), inherent in MSA appli-

cations.

Another gap identified in existing research is that most studies focus solely on the

initial scheduling of MSA applications. In the dynamic cloud-edge continuum, static

Problem Formulation 24

Table 3.1: Comparative Analysis of Related Works

Work
Rescheduling
Compliant

Real-World
System

Cloud-Edge
Continuum
Compliant

Network
Model

Placement
Objectives

Placement
Algorithm

Workload
MSA Invocation

Pattern

[47] ✓ ND
Cost,

Latency
RL Microservice Chain

[9] Connectivity Cost RL Monolithic DAG

[38] ✓ Distance
RU,

Bandwidth
RL Microservice DG

[37] ND Latency RL Monolithic ND

[7] ✓ ✓ Bandwidth
Cost, RU

Bandwidth,
Latency

RL Microserivce DAG

[26] Bandwidth
Cost, RU

Bandwidth,
Latency

Meta-Heuristic Microserivce DAG

[35] ✓ Connectivity
Cost,

Bandwidth
Heuristic Microservice DAG

[25]
Bandwidth,

Delay
Cost, Latency Meta-Heuristic Monolithic DAG

[40] Distance
Bandwidth,
Latency

Meta-Heuristic Microserivce DAG

[27] Distance
RU,

Latency
Meta-Heuristic Microserivce DAG

[34] ND
Deployment
Overhead

RL Microserivce DAG

[32] Connectivity Cost, Latency Meta-Heuristic Monolithic ND

[28] ✓ Delay Latency Heuristic Microservice DAG

[36] Bandwidth Cost, Latency
Mathematical
Programming

Microservice Chain

[24] Bandwidth Latency
Mathematical
Programming

Microservice Chain

[39] ✓
Bandwidth,
Latency

Cost, Latency Heuristic Microservice DAG

[21] ✓ Latency Cost, Latency Meta-Heuristic Microservice DAG

[20] ✓ ✓ Latency Latency Heuristic Microservice ND

[45] ✓ Latency Latency RL Microservice Chain

This work ✓ ✓ ✓
Bandwidth,

Delay
RU, Latency RL Microservice DAG

service placements can become suboptimal as resource availability changes due to fac-

tors like computing node failures. Only a few heuristic algorithms [20, 28] are capable

of rescheduling microservices to dynamically optimize microservice placement. How-

ever, these heuristic methods do not account for the intricate dependencies among mi-

croservices or the heterogeneous computing resources characteristic of the cloud-edge

continuum.

In this work, we propose a rescheduling algorithm that employs reinforcement learn-

ing to derive a placement policy. Compared to existing learning-based approaches, our

work models both the MSA application invocation patterns as DAGs and the heteroge-

neous cloud-edge continuum computing resources. Moreover, the proposed rescheduling

algorithm can actively reschedule microservices as resource availability changes, contin-

uously maintaining the optimal placement of MSA applications. Finally, our approach is

evaluated in a real-world Kubernetes cloud-edge continuum environment, demonstrating

superior performance compared to baseline methods.

Chapter 4

Problem Formulation and

RL-based Rescheduling

Algorithm Design

To address the challenges in MSA application placement in hybrid cloud/edge envi-

ronments identified in related work, we present a progressive rescheduling placement

strategy. This chapter begins with a system model for MSA applications and cloud-edge

resources in Section 4.1. Building on this model, we define the rescheduling problem

in Section 4.2. Section 4.3 introduces the reinforcement learning models, followed by a

brief overview of relevant reinforcement learning algorithms in Section 4.4.

4.1 System Model

Cloud-edge continuum is a hybrid distributed system environment that integrates com-

puting resources from both the cloud and edge layers. In this architecture, computing

nodes in the cloud layer are typically deployed in centralized data centers, providing

high resource availability and significant computing power. These characteristics make

the cloud layer ideal for applications that require substantial computational resources,

enabling efficient execution. However, a key challenge arises because cloud computing

nodes are often located far from end users, resulting in higher latency. In contrast, com-

puting nodes in the edge layer are deployed closer to end users, which reduces latency

but typically has more limited resources. By combining these two layers, the cloud-

edge continuum leverages the strengths of both. On the other hand, the heterogeneity

characteristics of computing resources in the cloud-edge continuum make optimizing the

end-to-end latency of the MSA application challenging.

25

Problem Formulation 26

Figure 4.1: System Architecture

The placement decision of each service in a microservice architecture (MSA) applica-

tion within a cloud-edge continuum is crucial. Each microservice may have different

characteristics, making it more suitable for deployment in either the cloud or edge layer

to achieve optimal performance. Furthermore, microservices within an MSA often have

complex internal dependencies, meaning that individual components must be considered

together to optimize end-to-end latency.

Figure 4.1 presents the architecture of the proposed system model, where cloud and edge

resources are managed collectively by a container orchestrator, forming a unified pool

of computing resources. At the core of this architecture lies the scheduler component,

which manages the placement of microservices. Initially, the scheduler deploys each

service within the MSA application according to a predefined scheduling policy. Once

the scheduling is complete, the scheduler continuously monitors both the state of the

Cloud-Edge Continuum and the operational status of the MSA applications. Using this

real-time information, the scheduler progressively reschedules microservices, aiming to

minimize end-to-end latency and enhance overall performance of the MSA applications.

Problem Formulation 27

Most existing research [9, 23, 44] focus on the placement policies for scheduling and

autoscaling processes. However, relying solely on the combination of Scheduler and Au-

toscaler does not address all placement challenges in dynamic computing environments.

Specifically, the placement decisions made by the Scheduler and Autoscaler may become

suboptimal when resource availability in the cloud-edge continuum changes. In such

scenarios, the service placement can be improved by rescheduling to different nodes to

maintain optimal performance, a task that cannot be achieved by the Scheduler and

Autoscaler alone.

To address this issue, we propose a novel approach that formulates the problem as a

rescheduling problem. We introduce a Rescheduling Controller that extends the Sched-

uler’s functionality. This controller continuously monitors changes within the cloud-edge

continuum and optimizes service placement by progressively rescheduling microservices.

This ensures that the system can adapt effectively to dynamic conditions, maintaining

optimal placement as resource availability fluctuates.

4.1.1 Application Model

A Microservices Architecture (MSA) application consists of multiple microservices that

collaboratively process user requests and handle various tasks. To accurately represent

real-world deployments of MSA applications within the cloud-edge continuum, we model

each service as potentially having multiple instances to facilitate autoscaling and ensure

fault tolerance, as detailed in Section 2.2.1. Each replicated instance of a service is

referred to as a Service Instance, and a collection of these instances constitutes a

Service. Every instance within a service i runs the same program and requires identical

amounts of CPU and memory resources from the host nodes, denoted as ricpu and rimem,

respectively. The maximum number of replicated instances allowed for a given service i

is represented by Simax, while the current number of running instances within a service

i is denoted as Sicur.

Regarding the load balancing between different services instances, our primary focus is

on the placement problem; therefore, we assume that load balancing is performed using

a round-robin strategy, which is a widely adopted load balancing strategy that is used

by container orchestration platforms like Kubernetes 1 and Marathon 2. This strategy

evenly distributes traffic across all available instances of a service.

The invocation pattern of the modeled application is represented as a Directed Acyclic

Graph (DAG), where services may invoke multiple external services. Specifically, each

1https://kubernetes.io/
2https://mesosphere.github.io/marathon/

Problem Formulation 28

service i can invoke a set of external services, and any subset of services that are in-

voked sequentially is defined as a Service Group. Within a service group, services are

interdependent and must be invoked in a strict sequence, whereas services belonging to

different service groups are independent and can be invoked in parallel. As elaborated in

Section 2.2.2 , distinguishing between parallel and sequential invocations is essential, as

this differentiation significantly impacts the formulation of the application’s end-to-end

latency optimization problem.

Symbol Description

S Number of Services in the Application

N Number of Nodes in cloud-edge continuum

β The index set of all services

τ The index set of all computing nodes

ε The index set of all running service instances

ψ The index set of service instances in MSA application

ω The index set of service groups, i ∈ β
Ei Set of all external services called by a service, i ∈ β
Simax Maximum number of running instances in service i ∈ β
Sicur Current number of running instances in service i ∈ β
Smax Maximum number of running instances in MSA application.

Scur Set of all service instances in the running states

L Set of all node layers, L = {cloud, edge}
Cicpu CPU capacity of a node i ∈ τ
Cimem Memory capacity of a node i ∈ τ
Aicpu CPU availability of a node i ∈ τ
Aimem Memory availability of a node i ∈ τ
Ricpu Total Requested CPU of a node i ∈ τ
Rimem Total Requested Memory of a node i i ∈ τ
Di,j Latency between two nodes i ∈ τ , j ∈ τ
Di
user Latency between end user and a nodes i ∈ τ

Dmsa End-to-end MSA application latency

Dij
S Average latency between services i and j. i ∈ β, j ∈ β
ti Internal execution time of running service instance i ∈ ψ
Eij Internal execution time of service instance i running in node j. i ∈ ψ, j ∈ τ
dij Latency between two service instances i ∈ ψ
ni Deployed node for a service instance i ∈ ψ
ricpu Requested cpu resource of service instance i ∈ ψ
rimem Requested memory resource of service instance i ∈ ψ
T iE Average internal execution time of service i,

T iG Total Service Invocation Time of Service Group i ∈ ω
T iS Average service processing time for service i ∈ β

Table 4.1: Symbol Table for System Modeling

Problem Formulation 29

4.1.2 Cloud-Edge Continuum Model

The Cloud-Edge continuum comprises a set of heterogeneous computing nodes. The

CPU and memory capacities of each node i are represented as Cicpu and Cimem, respec-

tively, while the available resources at any given time are denoted as Aicpu and Aimem.

In this dynamic environment, resource availability fluctuates over time, constrained by

each node’s maximum capacity.

In modern MSA application orchestration platforms like Kubernetes or Mesos, users can

specify both the resource requests and resource limits in the service instance specifica-

tions.he resource request indicates the minimum amount of CPU and memory a ser-

vice instance require Ts to be scheduled, while the resource limit defines the maximum

amount it can utilize. In practical deployments, this approach can result in scenarios

where more service instances are scheduled to one node by satisfying only the mini-

mum resource requests, potentially leading to resource contention and the termination

of service instances when resource demands exceed the available supply.

To mitigate these issues, we adopt a more conservative approach by assuming that

the resource requests and limits of each service instance are set to the same value. This

guarantees that each service instance is allocated a fixed amount of computing resources,

effectively preventing resource contention in the computing nodes and minimizing the

risk of service instance eviction due to over-commitment. Reflecting this approach in our

application model, it implies that for any node in the Cloud-Edge continuum, the total

CPU or memory resources requested by all service instances running on that node will

not exceed the node’s capacity. Specifically, for any node i, the total requested CPU and

memory resources, denoted as Ricpu and Rimem, must satisfy the following constraints:

n∑
i=1

Ricpu ≤ Cicpu and
n∑
i=1

Rimem ≤ Cimem (4.1)

Here, Cicpu and Cimem represent the total available CPU and memory capacity of node

i, while n is the number of service instances running on that node.

Another important characteristic of both edge and cloud nodes in the Cloud-Edge con-

tinuum is their latency to end users. In this work, we classify each node based on

whether it is deployed in the “edge layer”, which indicates proximity to the end user,

or the “cloud layer”, which signifies hosting in remote data centers. In this study, we

assume that user devices belong to the edge layer because the edge node is deployed close

to the end users. Therefore the latency between end users to any nodes in cloud-edge

Problem Formulation 30

continuum can be expressed as:

Di
user =


De2c if node i is in cloud layer

or

De2e if node i is in edge layer

(4.2)

Here, De2c, De2e represent latency between edge and cloud layers and latency between

edge nodes, respectively. Furthermore, the network latencyDi,j between nodes i and j in

the cloud-edge continuum also depends on their respective layers, and can be expressed

as:

Di,j =



De2c if nodes i and j are in different layers (edge and cloud)

or

De2e if nodes i and j are both in the edge layer

or

Dc2c if nodes i and j are both in the cloud layer

(4.3)

Here, De2c, De2e, and Dc2c represent latencies between edge-cloud, edge-edge, and cloud-

cloud nodes, respectively.

In this study, we assume that nodes within the same layer exhibit uniform latency

characteristics when communicating with nodes from other layers or end users. Although

in real-world scenarios, computing nodes within the same data center or geographic

region may experience different latencies due to variations in network infrastructure,

routing paths, or other factors [4], it is reasonable to assume that computing nodes

located in close proximity or within the same region will have similar latency to the end

users. This simplification enables us to abstract away some of the inherent complexity

in real-world networking while still capturing the essential characteristics of latency in

the Cloud-Edge continuum. By modeling latency in this manner, we significantly reduce

the problem’s complexity, making it more tractable to solve while maintaining a realistic

representation of network behavior in such environments.

When calculating end-to-end latency, it is crucial to also consider the internal execution

time of a service instance required to process a single request. In the Cloud-Edge Con-

tinuum, the average request execution time of a service instance is primarily determined

by the computing node on which the service instance is deployed. Variations in factors

such as CPU speed, disk I/O capabilities, and memory performance across heteroge-

neous nodes can lead to differences in execution times for the service’s computational

tasks [5]. To capture this heterogeneity, we model the different internal execution time

of service instances that are running on different nodes.

Problem Formulation 31

Figure 4.2: Latency Difference of Same Service

For any running service instance i, its deployed node is denoted as ni, therefore we

define its service instance execution as Eini
, which represents the internal execution time

of service instance i in its deployed node ni

4.2 Problem Formulation

We formulate our problem as rescheduling service instances to minimize the end-to-

end user request latency. The end-to-end latency comprises the accumulated execution

time of services invoked in processing a single user request and the network latency

incurred when the request is transmitted between services. Because we modeled the MSA

application as a service with multiple replica service instances, the traffic that is sent from

one service to another encompasses all network traffic between service instances within

those services. This means that the latency between services can vary dramatically

depending on the placement of service instances within the same service.

Figure 4.2 illustrates an example scenario where service A communicates with service B,

with the service instances of service B deployed across different nodes. In this example,

the network latency between nodes in the edge layer is assumed to be 10ms, while the

latency between a cloud and edge layer is 50ms. As a result, the overall latency between

service A and service B fluctuates depending on the specific placement of service in-

stances, ranging from 10ms to 50ms. Additionally, the execution times of user requests

processed by two service instances within service B may vary due to deployment on het-

erogeneous nodes with differing computational capacities. This heterogeneity introduces

variations in execution times for each instance, as nodes with different computing power

Problem Formulation 32

process requests at different speeds. Consequently, to accurately evaluate the end-to-end

latency of the MSA application, it becomes crucial to consider both the network latency

between instances of different services and the execution time of service instances within

each service.

The internal execution time of a service i on its deployed node ni is denoted by Eini
, as

specified in Section 4.1.1. For simplicity, we define ti = Eini
. Then the average internal

execution time of service i, represented as T iexec is formulated as:

T iexec =
1

Sicur

∑
j∈ψi

tj (4.4)

where ψi denote the sets of indexes of service instances in services i . Sicur denotes the

total number of current running service instances in service i.

To model the network latency between services, we start by examining the latency

between service instances located on different nodes within the cloud-edge continuum.

The latency between any two service instances is determined by the network latency

between the nodes hosting them. For any two service instances i and j with their

deployed nodes ni and nj , we define their latency as dij = Dninj , where Dninj is given

in Equation 4.3 and represents the node-to-node latency between ni and nj .

When two services that communicate over the network each include multiple service

instances, latency fluctuations can occur from request to request due to varying instance

pairs being involved, as discussed in Section 4.1.1. To evaluate the expected latency

between two services, we derive the average latency across all service instance pairs

between the two services. For any services i and j, the sum of all latencies between each

pair of service instances is given by:

Dij
sum =

∑
k∈ψi

∑
l∈ψj

dkl (4.5)

Here, ψi and ψj denote the set of indexes of service instances in services i and j, re-

spectively. Therefore, k ∈ ψi represents all service instances belonging to service i, and

l ∈ ψj represents all service instances in service j.

By dividing the total latency sum by the total number of service instance pairs—which

is the product of the number of service instances in each service—we obtain the average

latency between services i and j:

Dij
S =

1

Sicur · S
j
cur

Dij
sum (4.6)

Problem Formulation 33

Here, Sicur and Sjcur represent the numbers of currently running service instances in

services i and j, respectively.

Having modeled the average execution time and network latency between services, we

now focus on deriving the end-to-end latency for processing a user request in the mi-

croservices architecture (MSA) application. We define the average time for a service i

to process a user request, starting from the moment the service receives the request,

as the average service processing time T iS . This processing time consists of two main

components: the average internal execution time T iE of service i, as given in Equation

4.4, and the average total external service invocation time, which will be modeled in the

following sections.

As discussed in Section 2.2.3, when a service instance in a microservices architecture

(MSA) invokes external services, the invocations within a service group occur sequen-

tially, whereas invocations to different service groups occur in parallel. For any service

group i, the total service invocation time in the service group is denoted as T iG , which

is calculated by summing the average latency Dij
S between service i and each service j

in the group, along with the processing time T jS of the invoked external service j:

T iG =
∑
j∈gi

(
Dij
S + T jS

)
(4.7)

Here, gi denotes the set of all service indexes within service group i, so this equation

computes the total invocation time for all services j in the group.

The average service processing time T iS for service i is recursively defined as the sum of

its own internal execution time T iE and the maximum total invocation time among all

service groups j that are invoked by service i:

T iS = T iE +max
j∈ωi

T jG (4.8)

In this expression, ωi refers to the set of indexes of all service groups invoked by service

i.

We define the first service that the end user interacts with as the gateway service g of the

MSA application. The average latency between the end users and the gateway service,

denoted as Dgateway, is given by:

Dgateway =
1

Sgcur

∑
i∈ψg

Di
user (4.9)

Problem Formulation 34

Here, ψg represents the set of indexes of service instances in the gateway service g, Di
user

is the latency between the end user and service instance i in service g (as formulated in

Equation 4.2), and Sgcur is the number of replica service instances of the gateway service

g.

The end-to-end latency Dmsa of the MSA application can then be calculated by adding

the average latency between the end user Dgateway and the average service processing

time of the gateway service T gS , which recursively includes the processing times of all

subsequent services:

Dmsa = Dgateway + T gS (4.10)

In this work, we design a rescheduling algorithm that dynamically reschedule service

instances to adjust their placement within MSA applications in real time. Although

our rescheduling process is structured to minimize overhead, as will be discussed in

detail in Section 5.4.4, a small overhead remains due to the container orchestrator’s

need to reroute user requests to newly positioned service instances, resulting in a slight

increase in the end-to-end latency of the MSA applications. This rescheduling overhead

is modeled as an added latency DR, contributing to the overall latency. Thus, the final

end-to-end latency of the MSA application is represented as:

Dmsa =

Dgateway + T gS if no rescheduling process is ongoing

Dgateway + T gS +DR if rescheduling process is ongoing
(4.11)

The primary objective of this study is to optimize the end-to-end latency, Dmsa, for MSA

applications by improving service instance placement within the cloud-edge continuum.

This challenge, often referred to as the service placement problem, entails finding the

optimal placement of services to meet specific performance goals. However, the problem

is NP-hard [8, 48], making exact solutions computationally impractical. Consequently,

we employ Reinforcement Learning to derive approximate placement solutions aimed at

minimizing Dmsa.

4.3 Reinforcement Learning (RL) Model

Reinforcement Learning is an adaptive approach that optimizes decision-making by en-

abling the agent to learn through interactions with its environment, receiving feedback

in the form of rewards. The primary objective of the RL agent is to maximize cumula-

tive rewards over time, continually refining its decision-making process through trial and

Problem Formulation 35

error. This adaptive learning process can be formally represented using a Markov De-

cision Process (MDP) [49], which provides a structured framework for decision-making.

An MDP is characterized by the following components:

State space (S): The set of all possible states that are observed by the RL agent.

Action space (A): The set of actions available to the RL agent. In our research, the

action is designed to reschedule service instances between computing nodes..

Reward function (R): The immediate feedback the agent receives after taking an action

in a specific state. Our approach is primarily optimized for latency, and thus the reward

function reflects the change in latency before and after the agent executes a rescheduling

decision.

Discount factor (γ): A value between 0 and 1 that determines how much future rewards

are valued compared to immediate ones. A lower discount factor makes the agent pri-

oritize short-term rewards, while a higher discount factor encourages the agent to plan

for long-term gains.

The objective of the RL agent is to learn a policy π(a|s), which defines the probability

of taking an action a given a state s, in a way that maximizes the expected cumulative

reward:

V π(s) = E

[
N∑
t=0

γtR(st, at)

]
(4.12)

where V π(s) is the value of state s under policy π, and R(st, at) is the reward obtained at

time step t. The goal is to discover the optimal policy π that maximizes this cumulative

reward across all states, enabling the RL agent to effectively generate rescheduling action

for improved latency and resource optimization.

RL agent learns its policy through interactions with the environment and by receiving

rewards. In this work, the RL agent is trained in a simulation environment before being

deployed to the real-world testbed. The interaction between the RL agent and simulation

environment is shown in Figure 4.3. At the start of each decision-making process, the RL

agent is provided with a valid state St, representing the current cloud-edge continuum

environment and the status of the running service instances of MSA application. The

agent then generates a rescheduling action At, based on its learned policy π(At|St). The
rescheduling action involves selecting a service instance from all the running instances

of the MSA application and assigning a target node for rescheduling. Once the action is

executed, the application’s end-to-end latency may change due to the updated service

instance placement. A reward is then given, reflecting the latency change and defined

Problem Formulation 36

Process

RL Agent

(1) Observed State

(2) Action

(3) Reward

Cloud Nodes

MS B

Edge Nodes

MS A MS B

Cloud Layer

Edge Layer

Simulated Cloud-Edge
Continuum Environment

Figure 4.3: Interaction Between RL Agent And Environment

by the reward function. Afterward, the agent receives a new observation state St+1,

representing the updated environment.

The following are the key components of the proposed reinforcement learning model:

Episode: At the beginning of each training sequence, the simulation environment

resets the state of the cloud-edge continuum. From this reset state, the RL agent

interacts with the environment continuously until it selects the “idle” action, marking

the end of the sequence.

State: To provide informative states is crucial for enabling our RL agent to learn in-

tricate rescheduling policies. These policies need to be based on the cloud-edge contin-

uum’s status and the current state of the running MSA application to execute effective

rescheduling actions. For the state of computing resources, the current availability of

CPU and memory is represented as vectors [A1
cpu, A

2
cpu, ..., A

n
cpu] and [A1

mem, A
2
mem, ...,

Anmem]. Each available resource in computing nodes is constrained within the limits of

its respective capacity, denoted as [C1
cpu, C

2
cpu, ..., C

n
cpu] and [C1

mem, C
2
mem, ..., C

n
mem].

For each pod in the MSA application, its CPU and memory requests are represented

in vectors [r1cpu,r
2
cpu, ..., rncpu] and [r1mem, r

2
mem..., r

n
mem]. Another essential piece of

information is which node the pod is deployed on, represented as [n1, n2, ..., nn].

Action Space: The action taken by the RL agent involves selecting a service instance

i from the current MSA application and rescheduling it to another node j, represented

as an action pair A(i, j).

Problem Formulation 37

In addition to the regular rescheduling action, there is a special Idle action. This action

indicates that, instead of performing any rescheduling, the RL agent chooses not to

act. In real-world testbeds, each rescheduling operation incurs an overhead due to the

creation and termination of service instances. Therefore, the RL agent must have the

ability to halt rescheduling if the current placement is already optimal. To address this,

we designed our RL agent to make rescheduling decisions based on the current state of

the system.

In the simulation environment, when the idle action is selected, the current training

episode ends, and the environment resets for the next episode. In a real-world cloud-

edge continuum, selecting the idle action causes the RL agent to pause for a period

before starting the next monitoring iteration. The actions taken by the RL agent can

be formally expressed as:

A =

A(i, j) i ∈ ε, j ∈ τ if rescheduling is required

Idle don’t perform any rescheduling action
(4.13)

Here, i ∈ ε represent the set of all service instance indices, and j ∈ τ represent the

set of indices for all computing nodes in the cloud-edge continuum. The total number

of possible rescheduling actions is calculated as Smax × N , where Smax denotes the

maximum number of service instances in MSA applications and N represents the total

number of nodes in the cloud-edge continuum. Including the idle action, the RL agent

has Smax ×N + 1 discrete actions available.

When an action is taken by the RL agent, the action should meet certain constraints

to be considered as valid action. An action A(i, j) is deemed valid only if the following

constraints are satisfied:

ri = true (4.14)

Aimem > rimem (4.15)

Aicpu > ricpu (4.16)

Here, ri indicates the whether the current service instance i is in the running state.

Therefore, Equation 4.14 ensures that only service instances in the running state can

be rescheduled. Equations 4.15 and 4.16 specify that the target node must have sufficient

Problem Formulation 38

available CPU and memory resources to accommodate the requested resources of the

service instance.

Reward function: The RL agent learns policies by interacting with the environment.

To align the learning process with the objective of minimizing end-to-end application

latency, we embed this goal into the reward design. The formal definition of end-to-end

latency, Dmsa, is provided in Equation 4.11. After the RL agent performs a rescheduling

action, the end-to-end latency may change. We formulate the first part of the reward

function as the difference between the latency before and after a rescheduling action:

RewardD = Dbefore
msa −Dafter

msa (4.17)

where Dbefore
msa and Dafter

msa represent the MSA application end-to-end latencies before and

after the rescheduling action, respectively. The intuition behind this is straightforward:

if the latency improves, a positive reward is given; if it worsens, a negative reward is ap-

plied. The size of the reward or penalty is proportional to the change in latency—larger

improvements yield higher rewards, while significant increases lead to heavier penalties.

The difference between the latency before and after the rescheduling action captures

this heuristic, rewarding the agent based on latency improvement or penalizing it for

degradation.

This reward is also well-suited for scenarios in which the agent must first reschedule

service instances in a way that temporarily worsens latency, but later performs additional

actions to achieve a globally minimized latency. In such cases, even though intermediate

steps are penalized, the accumulated reward from the entire sequence of actions reflects

the overall latency improvement. Thus, the reward system incentivize the agent to take

steps that may involve short-term trade-offs but ultimately lead to better long-term

performance.

Another key heuristic in the reward function relates to the number of rescheduling

actions required to achieve the lowest latency. As mentioned in the action space design,

we designed an Idle action to ensure that the RL agent can stop when there is no further

potential for reducing application latency. Therefore, an RL agent that takes fewer

rescheduling steps and stops when appropriate should receive a higher reward, promoting

the learning of a more efficient policy. To encourage this behavior, we introduce a cost

penalty for each action, denoted as Penaltycost. This penalty reflects the cost incurred

by the RL agent for rescheduling a service instance, motivating it to minimize the steps

needed to reach an optimal placement. It is crucial to set this penalty carefully; if it

is too high, the RL agent may opt for Idle actions too early, limiting exploration and

preventing adequate coverage of the state and action space necessary for convergence.

Problem Formulation 39

As discussed in the action space design, the RL agent can produce invalid actions during

training. In our problem, valid rescheduling actions are sparsely distributed across the

action space. Depending on the current state, the target node in the action may have

a high probability of insufficient resources, or the service instance might not be running

because there are limited replicated instances. To train the RL agent effectively, ensuring

it learns to make valid actions, we impose a significant penalty Penaltyinvalid for each

invalid action.

As elaborated further in section 4.4, we train two different RL agents: Deep Q-Learning

(DQN) and Proximal Policy Optimization (PPO). For the PPO agent, we apply an

invalid action mask [50] to its policy network, effectively masking out invalid actions

during both the training and inference processes. This ensures that the PPO agent is

trained exclusively with valid actions. Consequently, no penalty for invalid actions is

required for PPO. Therefore, Penaltyinvalid is applied only to the DQN RL agent. The

final reward can be formulated as:

Reward dqn =

RewardD + Penaltycost if action is valid

Penaltyinvalid if action is invalid
(4.18)

Reward ppo = RewardD + Penaltycost (4.19)

Example of Episodes of the Proposed RL Model: Figure 4.4 illustrates two

episode workouts of the proposed RL agent interacting with the environment and the

associated state changes. In the first episode, the agent terminates due to performing

an invalid action, while in the second episode, it concludes with the agent generating an

”Idle” action. For simplicity, the figure displays only the states of pod placement and

the CPU availability of nodes, along with their changes.

Problem Formulation 40

2 1 2 3 0.5 0 1 2

2 1 2 3 0.5 0 1 2

S1

A0 = A(1, 2) Rescheduilng
Pod 1 to Node 2

R0 = +3

End Episode

S3

1 1 2 3 0 0.5 1 2S0

Pod Placement Node CPU Availability

POD 1 POD 2 POD 3 POD 4 NODE 1 NODE 2 NODE 3 NODE 4

100 ms

90 ms

R1 = -20 90 ms

A1 = A(4, 2) Rescheduilng
Pod 4 to Node 2

2 1 2 3 0.5 0 1 2S1

A0 = A(1, 2) Rescheduilng
Pod 1 to Node 2

R0 = +3

End Episode

1 1 2 3 0 0.5 1 2S0

Pod Placement Node CPU Availability

POD 1 POD 2 POD 3 POD 4 NODE 1 NODE 2 NODE 3 NODE 4

MSA Application
End-To-End Latency

100 ms

90 ms

A1 = A(4, 3) Rescheduilng
Pod 4 to Node 3

2 1 2 4 0.5 0 1.5 1.5S3 R0 = +6 70 ms

A1 = Idle

MSA Application
End-To-End Latency

(2): Successful Episode

(1): Failed Episode

Figure 4.4: Example of State Transitions in Proposed RL Model

In both cases, there are four service instances {SI1, SI2, SI3, SI4} deployed across four

nodes {Node1, Node2, Node3, Node4}. We assume that each service instance requests

0.5 units of CPU resources. Initially, SI1 and SI2 are placed on Node2, while SI3

and SI4 are placed on Node3 and Node4, respectively. The initial latency of the MSA

application is 100 ms.

In the first episode, the RL agent first produces the action A0 = A(1, 2), which resched-

ules SI1 to Node2. This results in a placement state transition for SI1 from Node1 to

Problem Formulation 41

Node2 . Consequently, the CPU resource availability of Node1 increases from 0 to 0.5

due to the release of resources by SI1, while the CPU availability of Node2 decreases

from 0.5 to 0. After this rescheduling, the application latency decreases from 100 ms

to 90 ms. Based on the reward function defined in Equation 4.18, and setting the

rescheduling cost penalty Penaltycost = 5, the RL agent receives a reward calculated as:

Reward = 100 − 90 − 5 = 5. Following this, the RL agent attempts an invalid action

A1 = A(4, 2), aiming to reschedule SI4 to Node2, which at this point lacks sufficient

CPU resources. As a result, the episode ends, and the agent receives an invalid action

penalty Penaltyinvalid, set to −100.

In the second episode, the RL agent begins by performing the same initial action as in

the first episode, leading to state S1. It then issues another valid action A1 = A(4, 3),

rescheduling SI4 to Node3. This results in state changes for SI4’s placement from

Node4 to Node3, the CPU availability of Node3 decreasing from 1 to 0.5, and the CPU

availability of Node4 increasing from 1.5 to 2.0. This placement further reduces the

application latency from 90 ms to 70 ms, yielding a reward of: Reward = 90−70−5 = 15

After reaching state S2, the RL agent produces an ”Idle” action, which ends the episode

and resets the environment.

4.4 RL-based Rescheduling Algorithms

In this work, we employ two distinct RL agents to address the rescheduling problem.

The first agent is DQN (Deep Q-Learning), a value-based RL agent that predicts the

potential value based on the current state and the action taken [51]. The second agent

is PPO (Proximal Policy Optimization) [6], a policy gradient approach that enables the

RL agent to directly learn the policy itself. We employ these two RL agents because our

rescheduling problem models the action space as discrete, and these agents are partic-

ularly effective for such environments. DQN and PPO also leverage neural networks to

approximate value functions and policy functions respectively, enabling them to handle

complex and high-dimensional state spaces more efficiently.

4.4.1 Deep Q-Learning

DQN is a value-based method focused on learning the action-value function Q(s, a),

which estimates the expected cumulative reward after taking action a in the state s.

The agent’s policy is indirectly derived by selecting the action that maximizes Q(s, a).

Deep Q-Learning (DQN) is an extension of the basic Q-learning algorithm designed to

Problem Formulation 42

handle large state and action spaces by using a neural network to approximate the action-

value function. Instead of storing explicit Q(s, a) values for all state-action pairs, DQN

uses a neural network with parameters θ to predict the Q-values for possible actions.

The training goal is to minimize the Temporal Difference (TD) error, which represents

the difference between the predicted Q-value and the target value. The TD error δt is

defined as:

δt = yt −Q(st, at; θ) (4.20)

where yt is the target value computed as the sum of the immediate reward and the

maximum discounted Q-value for the next state. The loss function to minimize the TD

error is given by:

L(θ) = E
[
(yt −Q(st, at; θ))

2
]

(4.21)

The network parameters θ are updated using gradient descent as follows:

θ ← θ − α∇θL(θ) (4.22)

where α is the learning rate, and ∇θL(θ) represents the gradient of the loss function

concerning the parameters θ. This update step progressively reduces the loss, bringing

the predicted Q-values closer to the target values and thus helping to derive an effective

policy. Since DQN learns to estimate the potential rewards of a state-action pair, it can

utilize a replay buffer [52] that stores past state-action pairs along with their associated

rewards. By randomly sampling from this buffer during training, DQN improves training

stability and reduces the risk of overfitting to recent experiences.

4.4.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a robust reinforcement learning (RL) algorithm

that builds upon the principles of policy gradient methods. It directly learns a policy

π, represented as a neural network that outputs a probability distribution over possible

actions. In traditional policy gradient approaches, the policy is updated by maximizing

the expected cumulative reward. The basic update rule for the policy network is:

θ ← θ + α∇θE

[
N∑
t=0

γtR(st, at)

]
(4.23)

where θ denotes the policy parameters, and R(st, at) represents the reward obtained

from taking action at in state st. This update process increases the likelihood of actions

that yield higher rewards. PPO refines this approach by incorporating the actor-critic

Problem Formulation 43

framework, which consists of two neural networks: the actor-network and the critic

network. The actor-network, expressed as π(a|s; θπ), is the policy network that outputs

the action distribution, while the critic network, represented as V (s; θV), estimates the

expected reward from a given state, similar to the Q-value function Q(s, a) in DQN

agents. Essentially, the actor-critic framework combines the strengths of both policy-

gradient and value-based methods.

During training, the critic network V (s; θV) is used to derive an advantage function

A(st, at), which measures how much better an action is compared to the critic’s value

estimate. The advantage function is defined as:

A(st, at) = R(st, at) + γV (st+1; θ
V)− V (st; θ

V) (4.24)

Here, V (st+1; θ
V) is the estimated value of the next state, and V (st; θ

V) is the value

of the current state. The advantage function essentially compares the actual outcome

(reward and the value of the next state) to the predicted outcome (value of the current

state). Using the advantage, the actor policy parameters θπ are updated as follows:

θπ ← θπ + α∇θπ log π(at|st; θπ)A(st, at) (4.25)

In this equation, ∇θπ log π(at|st; θπ) represents the gradient of the log-probability of tak-

ing action at. Compared to traditional policy gradient approaches, this update method

incorporates the advantage function, which helps to emphasize actions that lead to bet-

ter outcomes than expected, thereby guiding the policy more effectively towards higher

reward actions.

Simultaneously, the critic network θV is updated to minimize the Temporal Difference

(TD) error, a process similar to the Q-value update in DQN:

θV ← θV − β∇θV
(
R(st, at) + γV (st+1; θ

V)− V (st; θ
V)

)2
(4.26)

The actor-critic architecture employed by PPO improves the sample efficiency of the

learning process. By incorporating the advantage function into the policy update, the

value function guides the exploration of the RL agent more effectively. Another key

feature of PPO is its clipping mechanism, which prevents excessively large updates to

the policy network [53]. This feature stabilizes the learning process by ensuring that the

updates do not lead to drastic changes in the policy, which could otherwise destabilize

the training and negate the progress made by the agent.

System Implementation 44

4.4.3 Handling Invalid Rescheduling Actions

As discussed in section 4.3, a rescheduling action is considered invalid if the selected

service instance is not running, or if the target node lacks sufficient resources to provision

the rescheduled service instance. Traditional RL training handles invalid actions by

applying a heavy penalty whenever the RL agent produces an invalid action. While

this approach can eventually teach the agent to generate valid actions, it often requires

much longer training episodes. If valid actions are sparse within the action space, the

RL agent may struggle to converge effectively.

Huang et al. [50] proposed an invalid action mask mechanism that can be efficiently ap-

plied to policy-gradient RL agents. In the policy-gradient approach, the policy network

outputs unnormalized scores (logits) for each action, which are then passed through a

softmax function to produce a probability distribution over the actions. To mask out

invalid actions, an action mask is first generated as:

Mask(i) =

0 if action i is valid

−∞ if action i is invalid
(4.27)

The mask is applied to the logits of the policy network during both the training and

inference phases of the RL agent. When applied in the training phase, the mask pre-

vents the RL agent from sampling invalid actions, effectively enabling it to explore only

within the valid action space and thus facilitating faster convergence. During the infer-

ence phase, the invalid mask can be used to eliminate the possibility of the RL agent

generating invalid actions.

In this work, we applied the action mask to the PPO agent, while the DQN agent was

trained without a mask, as this mechanism has only been proven effective with policy-

gradient agents. Instead, the DQN is trained by applying an invalid action penalty

Penaltyinvalid as defined in Equation 4.18

Chapter 5

System Implementation

In this thesis, we have successfully implemented a comprehensive system that integrates

a Reinforcement Learning (RL)-based rescheduling algorithm and evaluates its effective-

ness in a real-world Kubernetes testbed. Figure 5.1 outlines the workflow of the proposed

system. Initially, we developed three sample Microservice Architecture (MSA) applica-

tions with diverse service invocation patterns using µBench [54], a widely recognized

toolkit for building benchmark MSA applications. These benchmark applications were

then strategically deployed in a Kubernetes cloud-edge continuum testbed, where

we gathered application profiling data. This data was subsequently imported into our

proposed RL simulation environment, CEEnv, allowing for the accurate simulation of

end-to-end latency across various service placements within the cloud-edge continuum.

Through this simulation environment, we trained our RL agents and reached conver-

gence. Our work extended beyond simulation: we developed a rescheduling plugin,

which incorporates trained RL agents to enable rescheduling functionality within the

real-world Kubernetes testbed. Finally, we redeployed the benchmark applications in

the testbed and utilized the RL agent with the rescheduling plugin to assess its perfor-

mance in reducing the end-to-end latency of MSA applications.

45

System Implementation 46

Build Benchmark
MSA Applications

Deploy Benchmark
Applications to

Real-World Testbed

Collect Profiling
Data From

Real-World Testbed

Import Profiling
Data To RL
Simulation

Environment

Train RL agents
In The

Simulation
Environment

Profiling
Phase

Training
Phase

Integrate RL Agents
With

Rescheduling
Plugin

Deploy
Rescheduling

Plugin in
Real-World Testbed

Collect Metrics
 From Real-World

Testbed

Deployment
Phase

Experiment
Results

Figure 5.1: Workflow of the implemented system. First, we construct a benchmark
MSA application and collect profiling data in a real-world testbed. This data is then
used to train an RL agent in the CEEnv simulation environment. Finally, the trained
agent is deployed via the rescheduling plugin and evaluated in the testbed.

In this chapter, we begin by introducing the Microservice Architecture (MSA) applica-

tion we constructed, as detailed in Section 5.1. Following that, we present the implemen-

tation of the Reinforcement Learning (RL) simulation environment in Section 5.2, which

serves as the foundation for our subsequent research. Leveraging this environment, we

discuss the training process of the underlying RL agent in Section 5.3. Subsequently, we

detail the implementation of the rescheduling plugin in Section 5.4, highlighting how it

integrates with the RL agent to optimize microservice placement. Finally, in Section 5.5,

we describe the MSA application profiler used in this work to collect MSA application

profiling data and metrics for evaluation.

5.1 Microservice Architecture Application

In this work, we utilize Kubernetes 1 to orchestrate the deployment of microservice

architecture (MSA) applications across heterogeneous computing nodes within the cloud-

edge continuum. Kubernetes, as the leading container orchestration platform, provides

extensive configurability, enabling flexible deployment strategies that are essential for

testing our reinforcement learning (RL)-based rescheduling module.

Several existing benchmarks facilitate MSA research in Kubernetes environments. For

example, Istio’s Bookinfo 2 demo serves as a widely-used MSA application benchmark,

1https://kubernetes.io/
2https://istio.io/latest/docs/examples/bookinfo/

System Implementation 47

FE

BE

DB

ML

Aggregator-Sequential

FE

BE

DBML

Aggregator-Parallel

FE BE ML DB

Chain

Figure 5.2: Constructed benchmark MSA applications with varying service
invocation patterns and orders. In Chain, services call each other sequentially. In
Aggregator-Sequential, the Front-End service calls ML, DB, and Back-End
services in sequence, while in Aggregator-Parallel, the Front-End calls ML and
Back-End services in parallel.

while DeathStarBench 3 , developed for social media microservices, has been extensively

adopted in cloud-based MSA studies. However, these benchmarks often target specific

workloads, resulting in microservices that have limited configurability, especially con-

cerning invocation patterns, computational complexity, and other vital parameters.

To address this limitation, our work compares and evaluates the performance of our

rescheduling policy by deploying MSA applications with diverse invocation patterns.

We chose µBench [54] as our primary toolset due to its ability to declaratively construct

microservice benchmarks, seamlessly integrate with Kubernetes, and export metrics via

Prometheus 4, which is a widely adopted application metrics database. This integration

facilitates the collection of detailed profiling data, such as internal execution times and

external invocation latencies, which are critical for simulation and analysis.

Using µBench, we designed three MSA applications, each reflecting a different invoca-

tion pattern. Figure 5.2 illustrates the constructed MSA applications. In the ”chain”

application, each microservice calls only one external service, forming a linear invoca-

tion pattern. The ”aggregator-sequential” application features a front-end service that

sequentially invokes multiple other services, while the ”aggregator-parallel” application

allows the front-end to call two external services concurrently. All applications share

the same set of microservices but differ in how they interact, emphasizing different in-

vocation patterns. Each MSA application comprises four services, with each service

supporting up to five replicas, resulting in a maximum of 21 pods per application. An

additional client pod is deployed on specific client nodes to simulate end-user requests

directed to the front-end service. Kubernetes manages load balancing within the cluster,

ensuring that requests are evenly distributed across all replicated pods of a service.

3https://github.com/delimitrou/DeathStarBench
4https://prometheus.io/

System Implementation 48

Table 5.1: Microservice Configuration

client front-end ml back-end db

pi calculation complexity 1 200 400 200 100

iteration of pi calculation 1 2 8 4 1

memory writing bytes(KB) 0 1000 2000 1000 100

disk writing 0 1 1 1 100

Microservices within our workload are defined and instantiated using µBench, which

allows precise control over the stress on computing resources for each user request. It’s

important to note that the names assigned to these microservices are used primarily for

ease of identification, based on the types of resource stress (CPU, memory, disk) they

impose, rather than their specific functionalities. These configurations help mimic the

heterogeneous task characteristics typically found in real-world applications.

A microservice configured through µBench can stress CPU resources by calculating digits

of π up to a specified complexity, stress memory by loading a specific amount of data,

and stress disk by writing a defined number of bytes. Detailed parameters for each

microservices resource usage are provided in Table 5.1. In our configuration, the front-

end microservice is lightweight, primarily handling user requests and routing them to

other services. The back-end service has a moderate workload, stressing both CPU and

memory resources. The ml service is computationally intensive, imposing high demands

on CPU, memory, and disk. Lastly, the db service focuses on disk-intensive operations,

akin to typical database workloads.

5.2 RL Environment Design and Implementation

Training Reinforcement Learning (RL) agents require extensive interaction with an en-

vironment to receive feedback [55], which is essential for learning effective policies. The

accuracy with which the environment simulates real-world conditions directly influences

the quality of the learned policies; higher fidelity simulations lead to superior policy per-

formance. Consequently, numerous studies [9, 33, 34] leveraging RL to address placement

problems have opted to train their agents directly within real-world testbeds.

However, the training of RL agents often demands a vast number of interactions with

the environment [55]. In the context of our research, achieving a robust RL policy

may require hundreds of such interactions. Within Kubernetes, each pod scheduling

operation can take several seconds, resulting in an exponential increase in training time

as the problem scale expands. To mitigate this challenge, many studies [23, 26, 31],

employ simulation environments like CloudSim [56], iFogSim [57], or EdgeCloudSim [58]

System Implementation 49

to train RL agents for cloud and edge computing problems. These simulators primarily

focus on modeling cloud and edge computing resources but often fall short of accurately

simulating the placement behaviors of microservice applications (MSAs) within modern

container orchestration platforms such as Kubernetes.

5.2.1 The Proposed Reinforcement Learning Environment

In this study, we introduce CEEnv, a reinforcement learning cloud-edge continuum

simulation environment designed for training RL agents to address the MSA application

placement problem. At a high level, the RL agent is initially trained within CEEnv to

learn a policy for rescheduling service instances in the MSA application. Once trained,

the agent is deployed in a real-world cloud-edge continuum—specifically, a Kubernetes

testbed—to execute actual rescheduling actions. As discussed in Section 4.3, the RL

agent learns its policy by interacting with the environment and receiving rewards that

evaluate the effectiveness of its actions. In our rescheduling problem, the difference in

end-to-end latency of the MSA application before and after a rescheduling action is a

crucial element of the reward design. Therefore, the simulation environment must be

capable of modeling MSA application end-to-end latency based on the placement of

service instances within the cloud-edge continuum.

CEEnv simulates the end-to-end latency of MSA applications under various configura-

tions of cloud-edge continuum resources and different MSA application workloads. This

capability allows the RL agent to learn effective rescheduling policies that can be directly

applied to a real-world Kubernetes cloud-edge continuum testbed.

Figure 5.3 illustrates the overall architecture of CEEnv. The simulation architecture

adopts a hierarchical software design, with each component implemented as a class that

encapsulates its respective functionality and data, ensuring modularity and maintain-

ability.

System Implementation 50

Pods

Deployment

Nodes

IVKGraph

Application

Network

Interface

ce-simulator

RL Agent

Observed State

Action

Reward

CEEnv

Figure 5.3: Architecture of CEEnv. The outer layer provides the interface used by
the RL agent framework to train RL agents. CEEnv includes the ce-simulator
component, which manages the data structures for the cloud-edge continuum
resources and the MSA application, including its invocation pattern.

The outermost layer is the rl-env layer, which implements the interface required for

the RL agent to interact with CEEnv. Key operations include reset(), which resets the

state of CEEnv, and step(), which applies an action and returns rewards along with

the resulting observation state. The interface provided by rl-env is compatible with

Gymnasium 5, a widely used RL environment framework, known for its robust sup-

port for stable-baselines3 footnotehttps://stable-baselines3.readthedocs.io/en/master/,

a popular RL agent library. In this study, stable-baselines3 are utilized to train the RL

agents.

The core component of rl-env is the ce-simulator, which plays a pivotal role in simu-

lating the end-to-end latency of MSA applications. The ce-simulator provides interfaces

for managing the placement of MSA applications, including schedule(), which schedules

service instances of MSA application to the simulated cloud-edge continuum computing

resources, and reschedule(target node id, pod id), which reschedules a currently

running pod to the specified target node.

To implement the core simulation functionality of ce-simulator, several classes have

been developed to simulate not only the MSA applications and the invocation pat-

terns between services but also the underlying cloud-edge computing resources. The

ce-simulator is designed to align with Kubernetes’ architecture for deploying MSA

5https://gymnasium.farama.org/

System Implementation 51

applications, enabling seamless definition and deployment of MSA applications across

both simulation environments and Kubernetes testbeds. Specifically, Kubernetes orga-

nizes MSA applications using a hierarchical structure. At the lowest level, the Pod is

the smallest computing unit, representing a service instance in our model. A Deploy-

ment is then used to manage a set of replicated pods, acting as a complete service that

balances the load. An MSA application can include multiple Deployment resources.

The ce-simulator adopts this design, utilizing the following classes to simulate MSA

applications:

Pod: Each service instance in the ce-simulator is represented as a Pod object. This

object records the node where the pod is hosted, as well as the CPU and memory

resources it requests from the host node.

Deployment: A Deployment defines a set of replicated pods for a specific service. The

Deployment object maintains a list of its replicated pods as Pod objects, effectively

representing the entire set of service instances.

IVKGraph: This object defines the invocation graph of the MSA application as a

Directed Acyclic Graph (DAG). Each service invocation is represented as a Service

object within the graph structure of the IVKGraph. The IVKGraph is essential for

calculating the end-to-end latency of the application, which will be elaborated on later.

Application: This class contains metadata about the MSA application, including its

name, a list of Deployment objects that represent the microservices of the application,

and the IVKGraph, which stores the service invocation patterns.

Along with the classes related to MSA applications, the key classes used to simulate the

cloud-edge continuum are composed of the following:

Node: The Node class stores metadata about a computing node within the cloud-edge

continuum. It records the availability of CPU and memory resources, the layer (cloud or

edge) to which it belongs, and its type. The type of information classifies a collection of

computing nodes that share similar computational power. As discussed in Section 4.1.2

We assume that if a pod runs on different nodes of the same type, it will experience

similar execution times.

Network: This class encapsulates network latency information within the cloud-edge

continuum. As discussed in Section 4.1.2, we model inter-node latency based on whether

the nodes are hosted in the cloud or edge layer. Therefore, the Network object stores

data on latency between cloud, edge, and user layers, as well as latency between nodes

within the same layer.

System Implementation 52

5.2.1.1 Profiling Data From Real-Word Environment

To capture the characteristics of the cloud-edge continuum, application profiling data

must be collected from a real-world testbed and integrated into CEEnv. Specifically,

two types of data need to be gathered. The first is the average latency between nodes

across the cloud, edge, and user layers. This data is essential for simulating node-to-node

latency within the cloud-edge continuum, as well as the latency between nodes and end

users. The second type of data is the average execution time for the pods in a service

running on specific types of computing nodes. This information will be used to calculate

the overall end-to-end latency based on the types of nodes where each pod in the MSA

application is deployed.

These two types of profiling data can be efficiently collected using modern monitoring

and tracing tools, such as Istio or Jaeger, with minimal effort. The collected data is then

fed into the simulation environment, along with the definitions of the MSA application

and cloud-edge continuum, through a JSON file.

5.2.1.2 Custom Configurations of CEEnv

CEEnv allows users to custom-define heterogeneous cloud and edge computing nodes

as well as MSA applications. In our work, we first set up a Kubernetes cloud-edge

continuum testbed and created MSA workloads with different invocation patterns. These

configurations were then mirrored in CEEnv to reflect the testbed setup and the MSA

application workloads we created.

To map a real-world cloud-edge continuum in CEEnv, users must first identify different

types of heterogeneous computing resources in the actual environment. As discussed

in Section 4.1.2, nodes in the cloud-edge continuum are grouped into types based on

their computing speed, ensuring that the execution time of the same service on nodes

of the same type remains similar. For example, in our real-world testbed, we identified

three types of computing nodes: Cloud-A, Edge-A, and Edge-B, where their average

execution times for the same machine-learning microservice ml were 50ms, 69ms, and

90ms, respectively. Based on these performance metrics, we categorized them as different

types of nodes.

After defining the node types, specific node specifications are configured, including CPU

and memory availability, associated node types, the layers (cloud, edge, or user) in which

these nodes are located within the cloud-edge continuum, and the number of nodes with

the same specifications.

System Implementation 53

Alongside the custom definition of cloud/edge computing resources, users can also de-

fine the MSA application workload. For each service in the MSA application, users

specify essential information such as CPU and memory requirements and the number of

replicated service instances. Additionally, as discussed in Section 4.1.1, each service can

define a list of Service Groups, where each Service Group contains a sequence of external

services to be called sequentially, while services in different Service Groups are called in

parallel. This approach allows users to create MSA applications with complex invocation

patterns, making CEEnv suitable for simulating real-world MSA applications.

5.2.1.3 Simulating MSA Application End-To-End Latency

The core functionality of CEEnv lies in its ability to simulate the end-to-end latency of

MSA applications based on their placement across cloud and edge computing resources.

To achieve this, MSA application profiling data and cloud-edge continuum network

profiling data are fed into CEEnv for the ce-simulator to evaluate pod-to-pod latency and

pod internal executing time. User-provided configurations for the cloud-edge continuum

and the MSA application are then used to generate the IVKGraph, which is a crucial

graph structure that preserves the invocation pattern of the MSA application.

Many existing works [7, 9, 25], model the invocation pattern of MSA applications as a

simple Directed Acyclic Graph (DAG), where each service is represented as a vertex, and

all outgoing directed edges point to the external services it calls. Although this structure

can illustrate the interactions between microservices, it fails to capture the specific order

of external service invocations. In CEEnv, the IVKGraph is also structured as a DAG;

however, it enhances the representation by storing services’ calling external services

within a list of Service Groups as discussed in Section 4.1.1. Each service in a Service

Group is invoked sequentially, reflecting a dependency order, while different Service

Groups are executed in parallel. This approach allows CEEnv to accurately model

complex invocation patterns, making it more effective for simulating real-world MSA

application behaviors.

Figure 5.4 provides an example of the IVKGraph structure, which models a basic invo-

cation pattern within a Microservice Architecture (MSA) application. In this instance,

Microservice Service A is organized into two service groups. In the first service group,

Service A makes sequential calls to Service B followed by Service C. In the second

group, Service A calls Service D. These two groups operate in parallel, meaning that

Service A simultaneously invokes both service group 1 and service group 2.

System Implementation 54

Service
Group 2

Service A
Service
Group 1

Service B

Service C

Service D

1

2

1

IVKGraph

Figure 5.4: Structure of IKVGraph, which includes 4 services in a graph structure

The construction of the IVKGraph ensures that the simulation environment captures

both the invocation patterns and the order of service calls, both of which are essential for

calculating the end-to-end latency. Once the IVKGraph is generated, CEEnv schedules

the MSA application by binding the Pod objects within each Deployment object to

specific Node objects. After the scheduling process is completed, the MSA application

is considered to be in a running state, and CEEnv proceeds to calculate the end-to-end

latency based on the defined service placements.

The calculation of end-to-end latency is a graph traversal problem [59]. The end-to-end

latency encompasses all network latencies incurred along the service call graph, as well

as the internal execution time required by each pod to process a user request.

The IVKGraph stores a Service object, which acts as the entry point for the MSA

application. The ce-simulator begins from this entry Service object and uses a Depth

First Search (DFS) algorithm to traverse all Service objects within the IVKGraph.

During the graph traversal, the ce-simulator calculates the total service execution

time for each service. This total execution time is the sum of the average internal

execution time of service replica pods and the average time spent invoking external

services. This method ensures that both processing and communication latencies are

accurately accounted for in the overall end-to-end latency calculation.

The average internal execution time for a service is calculated based on the average

internal execution times of all the pods hosted on different nodes. The MSA appli-

cation profiling data is used to determine the expected execution time of a pod when

it is deployed on a specific type of node. This ensures that the simulation reflects

System Implementation 55

the performance characteristics of different node types within the real-world cloud-edge

continuum.

The average external service invocation time for a service i is determined by calculating

the maximum invocation time among the services in any of the service groups that

service i calls. This is because, according to our definition, services within a Service

Group are invoked in parallel.

For each Service Group j, its invocation time is calculated as the sum of the invocation

times of all services k within that group, since these services are executed sequentially.

The invocation time for service i to call service k is computed as the sum of the average

network latency between all pods of service i and service k, plus the average execution

time of service k, which is obtained during the DFS traversal process.

The pod-to-pod latency is derived from the network latency information provided by the

profiling data, which allows the ce-simulator to simulate network delays between nodes,

ensuring a realistic simulation of the end-to-end latency for the MSA application.

By incorporating the invocation patterns and the execution order of services within

MSA applications, and by calculating the internal execution times and pod-to-pod la-

tencies using the profiling data, the ce-simulator effectively simulates the end-to-end

latency of MSA applications. This simulation reflects the performance of real-world

MSA deployments within a Kubernetes testbed.

5.3 RL Agent Training

In this work, we employ our custom-developed CEEnv environment to train reinforce-

ment learning (RL) agents for dynamic rescheduling within a cloud-edge continuum.

Before initiating the training process, we configure CEEnv to accurately reflect the

computing resources available in our Kubernetes testbed. The details of this con-

figuration, including the resource allocation and infrastructure setup, are thoroughly

discussed in Section 6.1. To gain insights into the behavior of the microservice archi-

tecture (MSA) applications, we conduct a profiling process on three distinct applica-

tions: Chain, Aggregator-Parallel, and Aggregator-Sequential. This profiling is

achieved through the use of monitoring tools deployed within the Kubernetes cluster,

allowing us to gather performance metrics and usage patterns, which will be elaborated

in Section 5.5.

For each of these workloads, we train two types of RL agents—Deep Q-Network (DQN)

and Proximal Policy Optimization (PPO), which allows us to conduct a comparative

System Implementation 56

analysis of the effectiveness of different RL algorithms in addressing the challenges asso-

ciated with MSA application rescheduling, providing insights into which strategies offer

better performance and adaptability.

CEEnv is adapted to the Gymnasium interface, making it compatible with a wide range

of RL agent implementations. We employ the Stable-Baselines3 6 framework, which

supports multiple reinforcement learning algorithms, to train both the DQN and PPO

agents. Notably, stable-baselines3 provides a masking mechanism for PPO, as discussed

in Section 4.4.3, allowing the agent to explore only valid actions without incurring penal-

ties for invalid ones.

The reinforcement learning (RL) agents adapted to the Stable-Baselines3 framework are

trained within CEEnv. In each training episode, the RL agent starts from an initial

state of the cloud-edge continuum with a deployed MSA application. It interacts with

CEEnv by selecting a sequence of actions, observing subsequent states, and receiving

rewards. The episode terminates under two conditions: (1) the RL agent selects an

”Idle” action, or (2) the number of action steps reaches the maximum limit, which we

set to 100 in this work.

Resource availability in the cloud-edge continuum is inherently dynamic, with computing

nodes experiencing fluctuating CPU and memory capacities. To ensure the RL agent

learns rescheduling policies under varying resource conditions, we configure CEEnv to

randomly assign the CPU and memory availability of each node to 30%, 70%, or 100%

during the environment reset. For example, a computing node with a maximum of 16

CPU cores may have its available cores initialized to 4.8 (30% of 16), 11.2 (70% of 16),

or 16 (100% of 16). Similarly, a node with a maximum of 8GB memory may have 2.4GB,

5.6GB, or 8GB available. This randomization ensures that at the start of each episode,

the RL agent experiences a diverse range of resource availability scenarios.

Following the reset of the cloud-edge continuum, CEEnv generates the MSA application

workload based on user-specified configurations. We randomly assign the number of

replica pods for each service between 1 and the maximum replica count, which is set

to 5 in this study. This approach allows the RL agent to learn rescheduling policies for

MSA services with varying degrees of replication, reflecting real-world scenarios where

autoscalers adjust workloads to accommodate fluctuating user demands.

After generating the MSA application workloads, the pods are randomly deployed across

the simulated cloud-edge computing nodes, establishing the initial placement for the

MSA application. The training episode then commences, with the RL agent exploring

6https://stable-baselines3.readthedocs.io/en/master/

System Implementation 57

rescheduling actions to optimize performance under the given resource constraints and

application demands.

5.4 Rescheduling Plugin

As discussed in Section 4, current solutions to the MSA application placement problem

often focus on the initial scheduling process. In this work, we developed a plugin to

enhance the Kubernetes scheduler, enabling it not only to manage the initial scheduling

of pods but also to continuously monitor the status of the cloud-edge continuum and

the running MSA applications, allowing it to perform rescheduling actions as needed.

Although this work utilizes Reinforcement Learning as the rescheduling policy, the plugin

is not specifically tailored for RL agents. Instead, it adheres to the design principles of

MSA, where the policy can be independently deployed and integrated with the plugin.

This design allows the plugin to be adaptable and compatible with potentially different

rescheduling algorithms, making it more flexible for future developments.

Figure 5.5 illustrates the overall architecture of our proposed rescheduling plugin, which

consists of three primary components, each designed to address specific aspects of the

rescheduling process. The first component, the Rescheduling-Controller, functions

as the orchestrator, managing the entire rescheduling process. It continuously monitors

the MSA application’s end-to-end latency and initiates the rescheduling planning pro-

cess by invoking the Rescheduling-Planner component whenever the latency exceeds

user-defined thresholds. Upon receiving a rescheduling plan from the Rescheduling-

Planner, the Rescheduling-Controller triggers the Rescheduling-Operator to execute

the required rescheduling actions.

System Implementation 58

Cloud Nodes

MS 1

MS 2

 Edge Node A

Cloud-Edge Continuum

MS 2

 Edge Node B

Edge LayerMonitoring

MonitoringRescheduling
Controller

Rescheduling
Operator

Rescheduling
Planner

Rescheduling Plugin

Rescheduling

Figure 5.5: Overall architecture of the rescheduling plugin, consisting of three main
components: the Rescheduling Controller, which continuously monitors application
and cluster states; the Rescheduling Planner, which generates rescheduling plans
based on observed states; and the Rescheduling Operator, which executes the
rescheduling actions.

The second component, the Rescheduling-Planner, acts as the primary decision-

making engine responsible for generating microservice rescheduling plans. At the core

of this component is a rescheduling policy that formulates a rescheduling strategy based

on the observed states of cloud and edge computing resources, as well as the operational

characteristics of the MSA application. In our work, we employed a reinforcement

learning-based rescheduling policy. Initially, the RL agent is trained within the pro-

posed RL simulation environment, CEEnv, as described in Section 5.2. This approach

allows for efficient learning without the delays associated with real-world deployments.

Once trained, the agent is deployed as the rescheduling policy within the Rescheduling-

Planner, enabling real-time rescheduling decisions in a live cloud-edge environment.

The third component, the Rescheduling-Operator, is tasked with executing the core

rescheduling operations according to the plans generated by the Rescheduling-Planner.

This component interacts directly with the cloud-edge continuum to ensure that service

instances are efficiently rescheduled to target nodes, minimizing service downtime and

ensuring a seamless transition during the rescheduling process.

System Implementation 59

5.4.1 Rescheduling-Controller

The Rescheduling-Controller is a pivotal component of the proposed Rescheduler, re-

sponsible for orchestrating the entire rescheduling process within a control loop. It

continuously monitors the application’s end-to-end latency by querying the monitoring

tools that are deployed in the Kubernetes cluster, it uses the latest latency data to

maintain an estimate of the application’s end-to-end latency by calculating a moving

average latency value from its latest monitored, defined as:

Estimated Latency = (1− α)× Estimated Latency + α× Sample Latency

where Sample Latency is the most recent latency measurement and α is a smoothing

factor set to 0.3 in this study. This moving average approach mitigates the impact of

transient latency fluctuations, ensuring that rescheduling decisions are based on stable

and reliable data.

When the estimated latency surpasses the user-defined threshold, the Rescheduling Con-

troller initiates the rescheduling process. This process begins by communicating with

the container orchestrator to retrieve metrics data, which mainly includes two parts:

The first part is the Node Resource Availability Data including the resource availabil-

ity information of current cloud and edge nodes in the continuum, the second part is

the Pod Data, including where each of running pod is hosted and their corresponding

resource request for the computing node.

The aforementioned collected data is subsequently passed to the Rescheduling-Planner,

which utilizes this information to generate a rescheduling plan. The Rescheduling

Controller will then decide whether to invoke the Rescheduling-Operator for actual

rescheduling actions based on the different plans returned by the Rescheduling-Planner.

5.4.2 Rescheduling-Planner

The Rescheduling-Planner serves as the core decision-making component, integrating

the rescheduling policy and receiving requests from the Rescheduling-Controller. It uses

Node Resource Availability Data and Pod Data received from Rescheduling-Controller

as input for the underlying rescheduling policy.

The underlying rescheduling policy is responsible for generating two types of plans: a

rescheduling action plan and a Skip plan:

Rescheduling Action Plan: This plan specifies a pod to be rescheduled and a target node

for pod rescheduling. Formally, the rescheduling action can be represented as A(i, j),

System Implementation 60

where A denotes the action of moving pod i to node j. If a rescheduling action plan

is generated, it is forwarded to the Rescheduling-Operator, which executes the actual

rescheduling operation.

Skip Plan: This plan indicates that no rescheduling operation will be performed, thereby

skipping the current iteration of the control loop. An “Skip” plan is produced by

Rescheduling-Planner in the case it thinks that there is no way to improve the end-

to-end latency of the MSA application, which will be elaborated in Section 5.4.2.

In this work, we incorporated a step penalty mechanism, discussed in Section 4.3, to train

our RL-based rescheduling policy to learn when to generate “Skip” plans. This approach

allows the policy to avoid unnecessary rescheduling actions once the placement of pods

in the MSA application has converged to an optimal configuration, thereby preventing

actions that do not improve the end-to-end latency. Specific strategies were incorporated

into the RL agent’s training process to achieve this behavior.

Based on the input state of the computing nodes and running pods, the rescheduling

policy generates rescheduling plans. One of the critical objectives is for the underlying

policy to produce a valid rescheduling plan, ensuring that the subsequent rescheduling

process can be successfully executed by the Rescheduling-Controller. In this study, we

employed DQN and PPO as our RL-based rescheduling policies. The PPO agent, in

particular, is capable of generating valid actions by utilizing the masking mechanism

described in Section 4.4.3. Specifically, the PPO agent first creates action masks based

on the Node Resource Availability Data and Pod Data, which are then applied during the

inference process to ensure that only valid rescheduling actions are selected. In contrast,

the DQN agent does not support the use of action masks, which means it may still

generate invalid actions that are subsequently handled by the Rescheduling-Controller.

5.4.3 Rescheduling-Operator

The Rescheduling-Operator is the main component for executing the actual rescheduling

process to the pods running in the Kubernetes. In this work, we meticulously designed

this process to minimize rescheduling overhead, with a primary focus on reducing ser-

vice downtime. Rescheduling overhead predominantly arises from service interruptions,

which can significantly degrade the Quality of Service (QoS) [60]. In scenarios where

a service comprises multiple instances, terminating one instance during the reschedul-

ing process can impose additional load on the remaining instances, thereby diminishing

QoS. Conversely, for services with only a single instance, the rescheduling process may

lead to service interruptions or even data loss, adversely affecting user experience.

System Implementation 61

To effectively address these challenges, we implement a rescheduling algorithm, which

is specifically engineered to eliminate instance downtime. The Rescheduling Operator

initiates the rescheduling process by deploying a new service instance on the target node

and waits until this new instance attains a running state. Only after the new instance

is fully operational is the old instance terminated. This strategy ensures that the total

number of replicated service instances remains unchanged throughout the rescheduling

process. By maintaining a constant number of active instances, our approach effectively

prevents service interruptions and minimizes rescheduling overhead.

5.4.4 Pod rescheduling in Kubernetes

Kubernetes does not natively support pod rescheduling operations. The closest native

functionality is provided by the Descheduler 7, which identifies pods that meet specific

conditions defined by de-scheduling policies and subsequently terminates them to re-

balance pod distribution across nodes. However, once the Descheduler terminates a

pod, it is rescheduled by the Kubernetes scheduler without control over the specific

node to which it is reassigned. To overcome this limitation, we have developed a custom

rescheduling functionality implemented in our rescheduling plugin.

Since the pod is part of a replica set for the service, Kubernetes does not allow spec-

ifying the placement of individual pods within the replica set. As a workaround, the

Rescheduling-Operator labels all nodes except the target node as “unschedulable”, en-

suring that subsequent pod scheduling occurs exclusively on the target node. The

Rescheduling-Operator then increases the replica count for the service deployment,

prompting Kubernetes to schedule the newly created pod on the target node. After

successfully deploying the new pod, the node labels are restored to their original state,

making all nodes ready for scheduling again.

Once the new pod is operational on the target node, the Rescheduling-Operator proceeds

to remove the old pod. Recall that to schedule the new pod, we increased the replica

count of the service deployment; at this stage, the Rescheduling-Operator decreased

the replica count. To ensure that the old pod is terminated promptly when the replica

count is reduced, the Rescheduling-Operator sets the Pod Deletion Cost 8 of the old

pod to a low value. The pod deletion cost is a Kubernetes feature that influences the

scheduler’s decision on which pods to terminate first when the number of replica pods

is decreased, allowing pods with lower deletion costs to be removed first. By assigning a

low Pod Deletion Cost to the old pod, we ensure that it is selected for termination when

the replica count is decreased. Subsequently, the Rescheduling-Operator decreases the

7https://github.com/kubernetes-sigs/descheduler
8https://github.com/kubernetes/enhancements/issues/2255

System Implementation 62

replica count, leading to the termination of the old pod due to its low deletion cost. This

approach ensures that the old pod is efficiently removed, completing the rescheduling

process with minimal impact on service availability.

5.5 MSA Application Profiler

Modern container orchestration platforms like Kubernetes can easily integrate a variety

of monitoring toolsets to observe the operational state of MSA applications. In this re-

search, we utilize a stack of monitoring tools to collect crucial MSA application metrics

data. We employ these data in two primary ways. Firstly, the MSA application profil-

ing data, specifically the internal execution time for pods, is fed into our Reinforcement

Learning (RL) simulation environment, CEEnv, to simulate the end-to-end latency of

MSA applications. Secondly, the proposed rescheduler plugin, which enhances the de-

fault Kubernetes scheduler, continuously monitors the real-time end-to-end latency of

the running MSA application to trigger rescheduling actions when necessary.

5.5.1 Profiling Data for CEEnv

As discussed in Section 5.2, CEEnv requires capturing the expected execution time

for each service running on heterogeneous computing nodes to simulate the end-to-end

latency of MSA applications. Therefore, precise profiling of the internal execution time

of pods is essential. In this work, we utilize µBench [54] to build and deploy benchmark

MSA applications. µBench offers seamless integration with Prometheus 9, an open-

source monitoring toolkit that collects and stores its metrics as time-series data. When

a pod in µBench receives a user request, it records the start time before executing

the computational task and the end time after completing the internal execution. The

internal execution time of the pod is then calculated and exposed via its /metrics

endpoint. Then Prometheus is configured to scrape the metrics data periodically and

store it in its database. This approach allows for the precise collection of internal

execution times of services, which are extensively utilized by CEEnv.

During the profiling process, we iteratively deploy services within the MSA application

to different types of nodes. For each profiling iteration, we utilize the benchmark tools

provided by µBench to generate user workloads and subsequently collect the average in-

ternal execution time over the duration using PromQL, the query language specifically

developed for Prometheus, to query the Prometheus server. This query retrieves the

9https://prometheus.io/docs/introduction/overview/

System Implementation 63

average internal execution time for a pod over the specified time interval, as shown in

Listing 5.1.

sum by (app_name)

(increase(mub_internal_processing_latency_milliseconds_sum {}[1m])) /

sum by (app_name)

(increase(mub_internal_processing_latency_milliseconds_count {}[1m]))

Listing 5.1: PromQL to collect data

5.5.2 Latency Monitoring for rescheduler

As mentioned in the previous section, the rescheduling controller continuously monitors

the end-to-end latency of the MSA application. In this work, we utilize Istio 10, a service

mesh technology, to facilitate this monitoring process. Istio allows us to monitor the

network traffic of the MSA application in a non-intrusive manner without modifying the

application code. This is achieved by injecting a sidecar proxy container into each of the

pods in the MSA application. The sidecar proxy intercepts all outbound and inbound

traffic of the pods, thereby enabling the capture of service latency.

We considered two approaches to capture the end-to-end MSA application latency. The

first approach utilizes the metrics exported by Istio to Prometheus. Istio can be in-

tegrated with Prometheus to export service-level latency metrics. However, the data

retrieved represents the average latency over a specific time interval (with a minimum

granularity of 30 seconds), due to Prometheus’s nature of scraping metrics at fixed inter-

vals. Consequently, the metrics collected from Prometheus are not sufficiently responsive

to reflect the latest updates in end-to-end latency and are more suitable for time-series

analysis.

Therefore, we opted to use Jaeger 11, an open-source distributed tracing system, for

more precise latency tracking. Jaeger injects trace headers into requests, which are used

to track and record request spans. Figure 5.6 illustrates an example of span data visual-

ized through the Jaeger interface. This span data provides detailed latency information

for each microservice involved in a request’s invocation path, allowing for more accurate

calculation of the end-to-end latency. These spans are collected and aggregated into

traces that represent the complete request path through the microservices. Istio inte-

grates seamlessly with Jaeger, enabling automated tracing of microservice interactions.

Each proxy sidecar injected into a pod automatically injects the necessary trace headers

for Jaeger and sends the collected trace data to Jaeger’s backend for analysis.

10https://istio.io/latest/
11https://www.jaegertracing.io/

Evaluation 64

Figure 5.6: The MSA application span data generated by Jaeger. It includes the
execution time of each service along the calling path.

The proposed rescheduler extensively utilizes jaeger to collect microservice latency data.

The trace data is collected by the Istio sidecar proxies from each service and then sent to

the Jaeger backend. The rescheduling-controller periodically queries the Jaeger backend

to retrieve the latest latency data from the MSA application. To smooth out short-

term fluctuations and provide a stable metric for decision-making, we are using the

latest latency data to calculate a moving average latency for each service as discussed

in Section 5.4.1

We calculate the moving average estimated latency for every service that is presented in

the trace data, The latency of the entry service of the MSA application is used to estimate

the overall end-to-end latency of the entire system. Additionally, the estimated latency

of other services in the MSA application is also calculated for a more granular evaluation

of the rescheduling effectiveness, enabling a detailed analysis of how rescheduling actions

impact the latency of each microservice within the application, which will be used in

the evaluation process.

Chapter 6

Performance Evaluation

In this chapter, we present our experimental results, derived from a real-world Ku-

bernetes testbed, to evaluate the performance of proposed PPO-based rescheduling al-

gorithm compared to the baseline algorithms. First, in Section 6.1, we analyze the

convergence of the PPO and DQN agents during training. Following this, Sections 6.2,

6.3, and 6.4 describe the baseline algorithms, the configuration of the cloud-edge contin-

uum testbed, and the metrics used in our evaluation. Experimental settings are further

detailed in Section 6.5.

In the results analysis presented in Section 6.6.1, we compare the end-to-end latency

of benchmark Microservice Architecture (MSA) applications under various scheduling

algorithms, observing that the PPO algorithm consistently achieves the most significant

latency reduction. In Section 6.6.2, we analyze the execution times of microservices

within the MSA applications under each algorithm. This analysis offers insights into how

different algorithms impact service execution times, ultimately contributing to the over-

all end-to-end latency of the applications. Section 6.6.3 explores the distribution of pods

across nodes within the cloud-edge continuum, revealing that the PPO-based schedul-

ing policy dynamically adjusts pod placement to accommodate workload fluctuations.

Lastly, Section 6.6.4 evaluates the PPO algorithm’s resilience to node failure events.

Our findings indicate that the PPO algorithm’s pod placement strategy reduces average

end-to-end latency by 7.8%, 11.4%, and 8.8% for the Chain, Aggregator-Parallel, and

Aggregator-Sequential applications, respectively, compared to baseline algorithms. Fur-

thermore, the PPO-based approach consistently outperforms the baselines by effectively

minimizing latency variability and suppressing latency spikes.

65

Evaluation 66

6.1 Convergence of the RL Agents

In this study, we trained RL agents on a high-performance virtual machine equipped

with 32 CPU cores and 64GB of memory, hosted on the Melbourne Research Cloud 1.

For each Microservice Architecture (MSA) application workload, we trained a Proximal

Policy Optimization (PPO) agent, which serves as our primary RL model, and compared

it against a Deep Q-Network (DQN) agent as a baseline. The hyper-parameters for both

PPO and DQN are listed in Table 6.1, it includes both training parameters and reward

parameters from our reward function as discussed in Section 4.3. We limited the training

time steps to 10 million, resulting in approximately 5 hours of real-world training time

for each RL agent.

Parameter Value Parameter Value

Penaltystep 1.25 Batch size 64

Penaltyinvalid -10 Replay buffer size 1 ×106

Learning Rate (α) 3 ×10−4 Exploration Fraction (DQN) 0.1

Discount Factor (γ) 0.99 No. of Fully Connected Layers for Q-Network 3

Clip Range (ϵ) 0.2 No. of Fully Connected Layers for Policy Network 2

Entropy Coefficient (β) 0 No. of Fully Connected Layers for Value Network 2

Soft Update Coefficient (τ) 1

Table 6.1: Hyper-Parameters For DRL Agents

Figure 6.1 shows the accumulated rewards per episodes of PPO and DQN under different

MSA workloads, calculated as the average accumulated rewards over every 100 episodes

during the training process. We observe that PPO converges faster than DQN. PPO

reaches convergence in all workloads at around 2 million time steps, while DQN gradually

converges and stabilizes at around 6 million time steps. We believe the difference in

convergence rates between DQN and PPO agents mainly stems from the fact that the

PPO agent utilizes the invalid action mask as discussed in Section 4.4.3 to ensure its

exploration includes only valid actions. This approach spares PPO from learning the

valid action policy from scratch.

1https://docs.cloud.unimelb.edu.au/

Evaluation 67

Figure 6.1: Convergence of accumulated rewards for PPO and DQN agents on
Aggregator-Parallel, Aggregator-Sequential, and Chain application workloads. The
PPO agent demonstrates faster convergence in accumulated rewards compared to the
DQN agent.

We also observe a significant difference in the converged accumulated rewards achieved

by DQN and PPO. This discrepancy is due to the large invalid action penalty applied

to DQN. Although DQN learns to have a higher likelihood of generating valid actions,

its policy does not fully avoid invalid actions, resulting in a mean average reward signif-

icantly lower than that of PPO.

Figure 6.2 shows the average episode length of PPO and DQN. As previously discussed

in Section 4.3, an episode ends only if the RL agent chooses the “Idle” action or reaches

the maximum episode length, which is 100 in our case. Therefore, the episode length

represents the average number of rescheduling actions an RL agent generates before

selecting the “Idle” action to actively stop.

Figure 6.2: Average episode length of PPO and DQN agents on Aggregator-Parallel,
Aggregator-Sequential, and Chain application workloads. The converged average
episode length for PPO exceeds that of DQN, indicating a more explorative policy
in performing rescheduling actions.

In the figure, PPO converges to an average of 5 steps per episode, while DQN converges to

around 2 steps. The episode length of PPO starts from a high value and then converges,

whereas DQN starts from a low value and gradually increases to 2. This difference also

Evaluation 68

arises from how they handle invalid actions. The invalid action penalty makes DQN

very conservative in choosing actions other than “Idle”, since invalid actions yield a

high penalty. After DQN gradually learns to avoid some invalid actions, it begins to

explore actions with a high potential for latency improvement. In contrast, PPO, from

the beginning, explores only valid actions due to the masking mechanism, making it

more aggressive in pursuing actions that could lead to latency improvements.

6.2 Baseline Algorithms

In this study, we evaluate two types of algorithms: scheduling algorithms, which gen-

erate initial placements for MSA applications, and rescheduling algorithms, which op-

timize existing placements by performing pod rescheduling. We employ three scheduling

algorithms and one rescheduling algorithm as baselines to benchmark the performance

of our proposed PPO rescheduling algorithm:

Default: This scheduling algorithm is the default algorithm that is used by the Ku-

bernetes Scheduler 2. It assigns pods to nodes by ensuring that each pod’s resource

requests are satisfied by available nodes. Beyond meeting resource requirements, the

scheduler does not impose additional placement constraints, resulting in placements

that may vary randomly across different deployments of microservice applications. In

a cloud-edge continuum setup, this leads to a balanced utilization of both cloud and

edge resources. Since our rescheduling algorithms operate on placements generated by

the Kubernetes Scheduler, Default serves as an important baseline to demonstrate the

potential latency improvements achievable through rescheduling.

Cloud-First: This scheduling algorithm adopts a best-effort placement strategy that

prioritizes offloading jobs to the cloud layers within the cloud-edge continuum. In scenar-

ios where edge computing resources are highly constrained, prioritizing cloud resources

helps alleviate resource limitations. Additionally, cloud computing resources generally

offer greater computational power and scalability, making them suitable for processing

computationally intensive tasks.

Edge-First: In contrast to the Cloud-First strategy, the Edge-First scheduling algo-

rithm prioritizes placing pods on edge-layer devices to leverage the low-latency charac-

teristics inherent to edge computing. This best-effort placement strategy attempts to

utilize edge resources first; if edge computing resources are insufficient, pods are then

offloaded to cloud layer nodes. This approach aims to minimize latency by keeping

computation close to the data source or end-users.

2https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

Evaluation 69

DQN: The DQN rescheduling algorithm utilizes a Deep Q-Learning reinforcement learn-

ing approach to derive a rescheduling policy. We use DQN as a baseline to compare

against the actor-critic-based reinforcement learning rescheduling algorithm, Proximal

Policy Optimization (PPO), to evaluate the benefits of the PPO approach in optimizing

pod placements.

6.3 Cluster Setup

6.3.1 Virtual Machine (VM) Setup

We built a real-world cloud-edge continuum testbed using virtual machines (VMs) pro-

vided by the Melbourne Research Cloud 3. The VM specifications are summarized in

Table 6.2, with the testbed comprising 7 VMs in total, providing a combined capacity of

32 CPU cores and 128GB of memory. The configuration includes 2 VMs allocated to the

cloud layer, 4 VMs forming the edge layer, and 1 VM dedicated to hosting a client pod

for generating end-user requests to the MSA applications. Each VM runs Ubuntu 22.04

and is equipped with a 30GB persistent volume. To reflect the heterogeneous nature

of computing resources in a typical cloud-edge continuum, we employed three types of

VMs with varying computational capacities.

VM Type CPU Cores Memory Storage Operating System Count

Cloud-A 8 16GB 30GB Ubuntu 22.04 2

Edge-A 4 8GB 30GB Ubuntu 22.04 2

Edge-B 2 4GB 30GB Ubuntu 22.04 2

Client-A 4 8GB 30GB Ubuntu 22.04 1

Table 6.2: Testbed Virtual Machines Specifications

We then deployed the Kubernetes container orchestrator platform to manage the testbed

clusters. While distribution versions like K3S 4 and K0S 5 offer simplified, one-off instal-

lation processes that ease Kubernetes deployment, they are often highly encapsulated

and lack the extensibility of the original Kubernetes cluster. Therefore, we chose to

manually configure and deploy a native Kubernetes cluster using kubeadm 6, a toolkit

designed for deploying Kubernetes on bare-metal clusters. We developed a script to

enable crucial Linux system modules on the VMs provided by the Melbourne Research

3https://docs.cloud.unimelb.edu.au/
4https://k3s.io/
5https://k0sproject.io/
6https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

Evaluation 70

Cloud, which are essential for installing Kubernetes but not well documented by Kuber-

netes officials. The script is presented in List 6.1.

#!/ bin/bash

set -e

Configure persistent loading of modules

tee /etc/modules -load.d/k8s.conf <<EOF

overlay

br_netfilter

EOF

Ensure load modules

modprobe overlay

modprobe br_netfilter

Set up required sysctl params

tee /etc/sysctl.d/kubernetes.conf <<EOF

net.bridge.bridge -nf -call -ip6tables = 1

net.bridge.bridge -nf -call -iptables = 1

net.ipv4.ip_forward = 1

EOF

Listing 6.1: Script for enabling linux system module

One of the cloud layer nodes is configured as the Kubernetes control plane. By default,

Kubernetes disables the scheduling of workload pods on control-plane nodes to enhance

their availability. However, in this study, we enable scheduling on the control plane

node since the testbed is intended for non-production use. To facilitate the pod-to-pod

networking model inherent to Kubernetes, Calico 7 is deployed as the network plugin.

Calico assigns a unique cluster-wide IP address to each pod within the Kubernetes cluster

by leveraging its managed IP pools, thereby ensuring efficient and scalable network

management. Additionally, Containerd 8 is utilized as the container runtime.

With a functional Kubernetes cluster in place, we proceed to install the monitoring stack

detailed in Section 5.5, which comprises Istio, Jaeger, and Prometheus. Prometheus

is deployed using the community-maintained Helm chart kube-prometheus-stack 9,

which also integrates seamlessly with Grafana to enhance data visualization capabili-

ties. For Istio, the official command-line tool istioctl 10 is employed to streamline its

installation process. Furthermore, a specialized configuration for Zipkin is implemented

to enable Istio’s integration with Jaeger, as illustrated in Listing 6.2. This comprehen-

sive monitoring setup ensures robust observability and tracing within the cloud-edge

continuum testbed.

7https://docs.tigera.io/calico/latest/getting-started/kubernetes/self-managed-onprem/onpremises
8https://containerd.io/
9https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack

10https://istio.io/latest/docs/setup/install/istioctl/

Evaluation 71

apiVersion: install.istio.io/v1alpha1

kind: IstioOperator

spec:

meshConfig:

enableTracing: true

accessLogFile: /dev/stdout

defaultConfig:

tracing:

zipkin:

address: zipkin.istio -system :9411 <--- important

Listing 6.2: Confuration files for istio to integrate with Jeager

6.3.2 Configurations for Cloud-Edge Continuum Testbed

In this work, we configure the testbed to reflect the network characteristics and hetero-

geneity of computing resources in the cloud-edge continuum. Cloud and edge nodes in

this continuum exhibit varied latencies to end users. We apply latency constraints to

two cloud-layer computing nodes using the Linux network traffic control utility tc 11.

The raw network latency between virtual machines (VMs) in the Melbourne Research

Cloud is under 1ms. For each of the cloud nodes, we introduce a 50ms latency to all

edge-layer and user-layer nodes to simulate realistic network conditions.

To emulate the heterogeneity of computing power often found in the cloud-edge contin-

uum, we configure our testbed to include computing nodes with varying performance

capabilities, which can lead to differences in execution times for the same tasks. The

VMs in the Melbourne Research Cloud offer limited options for CPUs with different

per-core performance; therefore, we need to apply constraints to the VMs in the cluster

to reflect such computing power heterogeneity.

One approach to achieve this is to limit the CPU frequency using the Linux utility

cpufreq 12. However, this requires support for the frequency governor module in the

host machine, which is not available in the VMs of the Melbourne Research Cloud.

Consequently, we opt to emulate execution time differences directly at the application

layer. Each microservice running on cloud nodes of type Cloud-A operates with normal

execution time. Services running on edge nodes of type Edge-A are configured to have

execution times that are 1.5 times that of Cloud-A, while those on nodes of type Edge-B

have execution times set to twice that of Cloud-A.

The extension to application execution time is implemented at the application level: for

each service of the MSA application that is constructed by µBench, after completing

11https://www.man7.org/linux/man-pages/man8/tc.8.html
12https://docs.kernel.org/admin-guide/pm/cpufreq.html

Evaluation 72

the internal computing tasks, it sleeps for a period based on the node type it is hosted

on. This extends the execution time according to our configured factor for each node

type. This approach allows us to use the existing cloud computing VM resources from

the Melbourne Research Cloud to construct a testbed that reflects heterogeneous nodes

with different computing power in the cloud-edge continuum.

6.4 Metrics

In this work, we focus on three key metrics to evaluate the effectiveness of the proposed

rescheduling algorithms. The first metric is application end-to-end latency, which is the

main metric we use to evaluate rescheduling and scheduling algorithms performance. It

calculates the time when requests are sent from end users and received by the end users.

The second is the individual service execution time, which is the duration starting when

a microservice receives a user request until the service response. During the service

execution time, it executes internal tasks and calls external services if any. This metric

is useful for giving insight into how each service contributes to the MSA application’s

end-to-end latency. These two metrics are obtained in two forms. The first form is

the application span data that is collected using the tracing tool Jaeger, enabling us to

precisely monitor and evaluate the response times across different microservices. The

second form is the time-series end-to-end latency data that is produced by the workload

generator, which will be used to extensively analyze the real-time latency variations

and trends when application pods are placed by underlying rescheduling or scheduling

algorithms.

In this work, we will also collect pod placement information. By analyzing the distri-

bution of pods across various node types under specific placement policies, we aim to

understand how the proposed algorithm assigns workloads in the cloud-edge continuum.

Given that the nodes in this continuum exhibit varying network latencies to end-users

and different task execution capabilities, the rescheduling algorithm must assign pods

to nodes that best match their computational requirements. Additionally, the analysis

of pod placement offers insights into the resulting network topology, which is critical

in microservices architecture (MSA). Since the services within an MSA application are

interdependent, an inefficient network topology can lead to increased data transmission

delays between microservices, negatively affecting overall performance. Thus, it is es-

sential to assess whether the rescheduling algorithms produce placements that result

in a more efficient network topology, facilitating smoother and faster communication

between services.

Evaluation 73

6.5 Experimental Settings

In this study, we conducted two separate experiments to evaluate the performance of

the proposed rescheduling algorithms. The first experiment was a quantitative analysis

that focused on measuring the average end-to-end latency and service execution

time of applications across different algorithms. Additionally, we collected data on

pod placement distributions across various node types, which allowed for a detailed

examination of the distinctive characteristics of placement policies employed by both

proposed and baseline algorithms. In the second experiment, we design a node failure

scenario in the Kubernetes testbed and test proposed rescheduling algorithms with

baselines in this scenario. Time-series latency data is collected to show the latency trend

during the whole workout, which provided valuable insights into how each algorithm’s

pod placement decisions influence the MSA application’s end-to-end latency in real-time,

and how they adapt to changes in cluster resource availability.

6.5.1 End-To-End Latency Experiment Settings

In this experiment, we quantitatively assess and compare the end-to-end latency, ser-

vice execution time and pod distribution outcomes for each algorithm. For each of

the algorithms and MSA applications that are tested, the evaluation is conducted

using three constructed Microservice Architecture (MSA) applications: Aggregator-

Sequential, Aggregator-Parallel, and Chain as discussed in Section 5.1. Since each service

within these applications can be replicated across multiple pods, we thoroughly test the

algorithms under three different replication settings, where each service has 1, 3, and

5 replicas. This setup results in three distinct pod configurations for each MSA appli-

cation, comprising 4, 12, and 20 pods respectively. The tested MSA applications with

different settings are listed in Table 6.3.

Name Type Service Pod # Total Pod #

chain-4pods Chain 1 4

chain-12pods Chain 3 12

chain-20pods Chain 5 20

aggregator-parallel-4pods Aggregator-Parallel 1 4 aggregator-parallel-12pods

Aggregator-Parallel 3 12

aggregator-parallel-20pods Aggregator-Parallel 5 20

aggregator-sequential-4pods Aggregator-Sequential 1 4

aggregator-sequential-12pods Aggregator-Sequential 3 12

aggregator-sequential-20pods Aggregator-Sequential 5 20

Table 6.3: Benchmark MSA Applications with Different Settings

Evaluation 74

There are two categories of algorithms evaluated in this experiment: scheduling and

rescheduling algorithms. The scheduling algorithms include baseline approaches such as

Cloud-First, Edge-First, and Default. On the other hand, the rescheduling algorithms

consist of the proposed PPO rescheduling algorithm and the baseline rescheduling al-

gorithm DQN. Since the pod placement happens in different phases of two types of

algorithms, quantitative experiment settings are slightly different.

For the scheduling algorithms, the MSA application is deployed directly by the under-

lying scheduling algorithms. Subsequently, the workload generator Runner 13 provided

by µBench is used to generate requests for the MSA applications. We configure the

workload generator to operate in “greedy” mode with 1 working thread. In this setting,

the workload generator initiates one thread to request the MSA application greedily.

As detailed in Section 5.1, a client pod is placed on specific user-layer nodes within

the testbed. The workload generator solely invokes the client pod within the cluster to

request the MSA applications, which means the end-to-end latency is measured from the

client pod, rather than from the workload generator. In such a setting, our measurement

of the end-to-end latency is controlled. After initiating the workload generator, we allow

a 60-second stabilization period to ensure that both the workloads and the application

deployment reach a steady state. Following this period, the latency metrics and pod

distribution data from the running MSA application are collected.

For the rescheduling algorithms, The rescheduling module, which is configured with the

underlying rescheduling algorithm is first deployed in the Kubernetes cluster and be-

gins monitoring the cluster and the MSA application state. Subsequently, the MSA

application is deployed using the Kubernetes Scheduler, which essentially employs De-

fault scheduling algorithm as discussed in Section 6.2. The workload generator then

starts generating workloads with the same settings used for evaluating the scheduling

algorithms. Once the MSA application is deployed, the rescheduling module starts to

perform a sequence of rescheduling until one of two conditions is met: (1) the reschedul-

ing module produces a “skip” action, or (2) the number of consecutive rescheduling steps

reaches the predefined maximum limit, which is set to 15 in this experiment. After the

rescheduling process concludes, we wait for 60 seconds and collect the metrics data.

The pod placement information is directly collected from the Kubernetes API server,

and the end-to-end latency data is collected from Jaeger. Given the stochastic nature

of placement plans generated by the algorithms, it is essential to conduct repetitive

experiments. Therefore, we performed 30 repeated experiments for each algorithm and

each MSA application tested. This ensures that the results account for variations and

13https://github.com/mSvcBench/muBench/tree/main/Benchmarks/Runner

Evaluation 75

provide a more accurate assessment of algorithm performance. An automated bash

script facilitates this process, streamlining data collection and analysis.

6.5.2 Node Failure Experiment Settings

In this experiment, we designed targeted node failure scenarios to evaluate the effective-

ness of our proposed rescheduling algorithm compared to baseline algorithms. We con-

ducted experiments individually for each benchmark application—Chain, Aggregator-

Sequential, and Aggregator-Parallel—deploying them one at a time onto the testbed.

During each application’s runtime, a workload generator sent user requests to simulate

real-world usage, allowing us to collect end-to-end latency data alongside timestamps.

This data enabled us to monitor latency trends and fluctuations over time, providing

insight into each algorithm’s performance in maintaining or recovering latency under

simulated node failure conditions.

In this experiment, each benchmark MSA application is configured with 3 replica pods

for each service, totaling 12 running pods per application. We chose this setting because

it ensures a sufficiently complex network topology. Additionally, we assume that after

a node failure occurs, the remaining computational resources are still adequate to host

the underlying MSA applications. MSA applications with 12 pods are recoverable in

our node failure scenario, meaning the complete application can still be hosted after the

node failures. In contrast, benchmark MSA applications with more pods cannot be fully

provisioned after the node failure event.

At the beginning of each experiment, the MSA application is deployed onto the testbed.

If the experiment evaluates scheduling algorithms, the initial placement is handled by the

underlying scheduling algorithms. Otherwise, in experiments focusing on rescheduling

algorithms, pods are initially deployed using Default. After deployment, the workload

generator begins sending user requests and collecting end-to-end latency data using the

same workload settings discussed in Section 6.5.1. We then wait for 60 seconds to allow

the MSA application deployment and workloads to stabilize.

Once the waiting period concludes, the experiment begins. For evaluations involving

rescheduling algorithms, rescheduling actions are initiated at this stage. At 150 seconds

into the experiment, a node failure event is simulated by failing two nodes simultaneously,

representing a significant system disruption. To maintain fairness across algorithms with

differing preferences for cloud or edge node placement, we selected one Edge-A node with

4 CPUs and 16GB of memory and one Cloud-A node with 8 CPUs and 32GB of memory.

This choice introduces a balanced failure scenario, impacting nodes from both the edge

Evaluation 76

and cloud layers, which allows us to observe each algorithm’s adaptability and resilience

across the cloud-edge continuum.

To simulate a node failure, we first tag the targeted failed node as “unschedulable,”

preventing Kubernetes from scheduling pods to it. The Kubernetes API ‘evict’ 14 is then

used to terminate all pods on the failed node. After the node failure event, Kubernetes’

self-healing mechanism handles the evicted pods by scheduling them to healthy nodes to

maintain the expected number of replica pods for each service. If scheduling algorithms

are being evaluated, the self-healing process uses the underlying scheduling algorithm;

if rescheduling algorithms are under evaluation, Default is used for self-healing.

After the pods are successfully rescheduled to healthy nodes, rescheduling algorithms

(if being evaluated) begin optimizing pod placement. The experiment concludes 150

seconds after the node failure events, and all time-series data is collected for analysis.

6.6 Results

This section presents the end-to-end latency results for benchmark MSA applications

across different scheduling algorithms, highlighting that the proposed PPO rescheduling

achieves the highest latency reduction in most cases. We proceed by examining the

microservice execution times within each MSA application, comparing the outcomes of

various algorithms. This analysis provides valuable insights into how each algorithm

impacts individual microservice execution times, which collectively determine the over-

all end-to-end latency. Further, we assess pod distribution patterns under PPO and

baseline algorithms, followed by a resilience evaluation of PPO in the face of node fail-

ures. In these failure scenarios, the PPO algorithm’s pod placement strategy reduces

average end-to-end latency by 7.8%, 11.4%, and 8.8% for Chain, Aggregator-Parallel,

and Aggregator-Sequential applications, respectively, while also stabilizing latency fluc-

tuations and mitigating performance spikes.

6.6.1 Evaluation of End-to-End Latency

In this subsection, we analyze the end-to-end latency results across the three MSA

applications, identifying key performance trends and highlighting the effectiveness of

each algorithm in optimizing latency under various configurations.

Figure 6.3 compares the end-to-end latency across various algorithms for three different

MSA applications. For each application, three configurations were tested, with pod

14https://kubernetes.io/docs/concepts/scheduling-eviction/api-eviction/

Evaluation 77

counts set to 4, 12, and 20. These configurations were achieved by adjusting the replica

count of each service to 1, 3, and 5, respectively.

Overall, the Chain and Aggregator-Sequential applications exhibited higher latency com-

pared to the Aggregator-Parallel. This outcome can be attributed to the shorter max-

imum calling chain in the Aggregator-Parallel, which benefits from concurrent calls to

external services, reducing overall processing time.

Both PPO and DQN rescheduling algorithms start with initial pod placements provided

by the Kubernetes Default Scheduler. The proposed PPO rescheduling algorithm out-

performed the baselines in most experiments, showing an average reduction of 21.56%,

9.83% in end-to-end latency compared to Default and Second best algorithms in the

experiment, DQN. Similarly, DQN demonstrated a 13.01% improvement over Default.

These results suggest that both learning based PPO and DQN rescheduling algorithms

effectively enhance the initial placement strategy, leading to improved application per-

formance. Across all applications, PPO achieved superior performance over baseline

algorithms in the 12 and 20 pod configurations. However, in the 4-pod setup of the

Aggregator-Sequential and Aggregator-Parallel applications, DQN delivered better re-

sults than PPO.

When comparing DQN to the Cloud-First algorithm, their performance was quite sim-

ilar. Notably, in the 4-pod setting, the Cloud-First algorithm outperformed all others.

However, as the pod count increased to 12 and 20, DQN surpassed Cloud-First. In all

configurations, both DQN and Cloud-First showed improvements over the Kubernetes

Default Scheduling algorithms.

Despite not being optimized for minimizing end-to-end latency, Default maintained con-

sistent latency across different pod configurations. Compared to heuristic approaches

like Cloud-First and Edge-First, the average latency variation from Default across dif-

ferent pod setups remained within 50ms. This consistency indicates that Default can

maintain stable latency even as the pod count changes, making it suitable for integration

with the Kubernetes autoscaling mechanism.

Evaluation 78

Figure 6.3: Comparison of end-to-end latency across three MSA applications. PPO
consistently outperforms baseline algorithms in the 12 and 20 pod configurations. In
lower pod settings, PPO also closely matches the best heuristic approaches.

The Cloud-First algorithm excelled when the total pod count was low (4 pods), outper-

forming other algorithms across all applications. This can be explained by its ability

to schedule all pods to the cloud layer when the pod count is small. In such cases,

internal microservice communication occurs entirely within the cloud layer, resulting in

lower network latency. Additionally, although cloud nodes have higher latency to end

users compared to edge nodes, they generally provide lower average execution times.

Therefore, when the pod count is limited, the cloud’s lower processing latency offsets

the higher network delay, yielding the lowest overall end-to-end latency.

In our experimental evaluation, Edge-First consistently demonstrated inferior perfor-

mance when the number of pods increased to 12 and 20 across all application scenarios.

This trend was particularly pronounced in Chain, where Edge-First resulted in an over-

all latency increase of 14.13% compared to Default at 12 pods. Conversely, when the

pod count was limited to 4, Edge-First outperformed Default, attributable to its ability

to allocate all pods to the edge layer, thereby minimizing inter-microservices network

latency.

Evaluation 79

Our analysis of rescheduling algorithms revealed distinct performance patterns. As the

number of pods increased, the Proximal Policy Optimization (PPO) algorithm effectively

maintained an average latency of around 200 ms, while the performance of Deep Q-

Network (DQN) deteriorated significantly. This difference likely stems from the relative

effectiveness of the policies each algorithm has learned. Specifically, PPO exhibited

average rescheduling steps of 1.58, 6.2, and 8.95 for configurations with 4, 12, and 20

pods, respectively, indicating a scalable approach to achieving optimal placement as

pod numbers grow. In contrast, DQN showed average rescheduling steps of 3.58, 2.47,

and 2.09, suggesting inefficiencies with larger pod counts. An insight into this is that

DQN frequently produced “skip” rescheduling actions due to the invalid rescheduling

actions which selected target nodes lacking sufficient resources, whereas PPO’s “skip”

actions were valid stop actions facilitated by an invalid mask mechanism, as detailed

in Section 4.4. This mechanism ensures that PPO learns policies based solely on valid

actions, enhancing its scalability and robustness. Consequently, PPO outperforms DQN

in maintaining effective rescheduling policies as pod numbers increase, highlighting its

superior adaptability in dynamic environments.

6.6.1.1 Rescheduling Algorithms Overhead

As previously noted, the average rescheduling steps required by the PPO algorithm un-

der 4, 12, and 20 pod configurations were 1.58, 6.2, and 8.95, respectively. Notably, our

rescheduling approach selectively adjusts the placement of only 39.5%, 52%, and 42%

of active pods on average in these configurations, rather than fully rescheduling the en-

tire application as conventional scheduling algorithms would necessitate. Additionally,

as discussed in Section 5.4.4, our algorithm achieves rescheduling by first deploying a

new pod on the target node and subsequently terminating the original pod, thereby

minimizing disruption. The primary overhead arises from the time required by Kuber-

netes network plugins to redirect user traffic to the new pod instances. In our tests,

this rescheduling process led to an approximately 20% temporary increase in end-to-end

latency during the transition phase. However, given the significant latency reduction

achieved by the algorithm overall, this overhead remains within an acceptable range.

6.6.2 Service Execution Time

In this section, we examine the service execution times across various MSA applications

as influenced by the placement strategies of the PPO algorithm and baseline algorithms.

This analysis provides insight into how individual service execution times contribute to

the overall end-to-end latency observed with each algorithm.

Evaluation 80

6.6.2.1 Chain

Figure 6.4 presents the individual service execution times for the Chain application as

generated by various scheduling algorithms. As discussed in Section 4.2, service exe-

cution time is defined from the moment a service receives a request until it responds,

encompassing both internal processing and external service calls. Across all MSA ap-

plications evaluated, the Front-End service consistently exhibits the highest execution

time due to its role in initiating calls to subsequent services. Specifically, in the Chain

application, the Front-End calls the Back-End, which in turn calls the ML service, and fi-

nally, the ML service interacts with the DB service. Consequently, the execution latency

decreases in the order of Front-End, Back-End, ML, and DB services.

The DB service, performing only lightweight CPU computations and disk I/O oper-

ations, contributes minimally to the overall latency, with execution times remaining

within milliseconds across different algorithms.

Among the scheduling algorithms, PPO outperforms others in the ML service by main-

taining an average execution time below 100 ms across all pod configurations. In con-

trast, the Edge-First algorithm underperforms in all settings due to the inherently longer

execution times of edge computing nodes compared to cloud nodes, which adversely af-

fects the computationally intensive ML tasks. The DQN algorithm demonstrates perfor-

mance comparable to Cloud-First, while Default does not consistently achieve optimal

results. Similar latency patterns observed in the Back-End service reinforce these find-

ings.

For the Front-End service, PPO results in higher execution times than DQN and Cloud-

First when the pod count is low (e.g., 4 pods). However, the end-to-end service latency

of PPO remains close to Cloud-First and superior to DQN under these conditions. This

behavior is attributed to PPO’s tendency to allocate the Front-End service to the edge

layer while placing other services in the cloud layer. In contrast, DQN and Cloud-First

algorithms allocate all pods to the cloud when pod numbers are low, reducing Front-End

latency by colocating services within the same layer. Nonetheless, placing services in

the cloud introduces additional latency for users, resulting in similar overall performance

for PPO, DQN, and Cloud-First when the pod count is limited to four. These results

highlight the trade-offs between localized service placement and user-perceived latency,

emphasizing the need for adaptive scheduling strategies based on pod configurations.

Evaluation 81

Figure 6.4: Execution time of Front-End, Back-End, ML, and DB services in Chain
across different algorithms. Each service’s execution time contributes to the overall
end-to-end application latency.

6.6.2.2 Aggregator-Parallel

The Aggregator-Parallel application involves a Front-End service that concurrently calls

the ML and Back-End microservices, with the ML service further interacting with the DB

service. Figure 6.5 shows the individual service execution time of Aggregator-Parallel.

Compared to the Chain workload, the longest calling chain in the Aggregator-Parallel

configuration consists of only three microservices (Front-End, ML, and DB). Conse-

quently, the expected end-to-end latency of the Aggregator-Parallel is generally lower

than that of the Chain application.

We analyze the service execution times by tracing from the last services in the calling

path, specifically the Back-End and DB services, back to the entry service Front-End.

Notably, the Back-End and DB services do not make external service calls, so their

execution times primarily reflect internal processing durations. For the Back-End ser-

vice, PPO produced the best execution times across all pod settings, with DQN’s results

being close to those of PPO. This indicates that both PPO and DQN effectively resched-

uled the Back-End service to computing nodes that offer favorable internal processing

performance. Since the DB results were consistent within a few milliseconds, our focus

shifted to its calling service, ML.

For the ML service, PPO demonstrated the best performance in the 20-pod configu-

ration, while DQN outperformed the 4 and 12-pod settings. In the 4-pod setup, the

Evaluation 82

Cloud-First algorithm produced the optimal results. Regarding the Front-End service,

Cloud-First also achieved the best performance in the 4-pod setting, while PPO excelled

in the 12 and 20-pod configurations. Notably, DQN showed better results than PPO in

the 4-pod scenario.

An important observation from these results is that, although PPO did not consistently

achieve the best execution times for the ML service in the 4 and 12-pod configurations,

it still managed to deliver competitive results for the Front-End service and overall

end-to-end latency. This can be explained by the structure of the Aggregator-Parallel

application: the external service time of the Front-End encompasses concurrent calls to

both the ML and Back-End services. Thus, PPO was able to achieve a lower overall

end-to-end latency by strategically balancing the latencies between calls to the Back-End

and ML services, rather than optimizing a single service’s performance in isolation.

Figure 6.5: Execution time of Front-End, Back-End, ML, and DB services in
Aggregator-Parallel across different algorithms. Each service’s execution time
contributes to the overall end-to-end application latency.

6.6.2.3 Aggregator-Sequential

Figure 6.6 shows the individual service execution time of Aggregator-Sequential. In this

application, the Front-End service sequentially calls the ML, Back-End, and DB services.

Each of these three services does not make external calls, meaning their execution times

solely reflect internal processing.

For the Front-End service, the PPO algorithm achieved the best results when the pod

count was set to 12 and 20, while DQN outperformed other algorithms in the 4-pod

Evaluation 83

configuration. The Cloud-First approach showed optimal results when the Front-End

and all associated services were placed entirely on the cloud layer, taking advantage of

lower internal service execution times.

An important observation from the results is that DQN generally outperformed PPO

across almost all pod settings for the ML, Back-End, and DB services. However, PPO

still achieved superior overall performance for the Front-End service and in terms of

end-to-end latency. Analysis of the pod placements generated by PPO reveals that, for

the Aggregator-Sequential application, PPO tends to keeps pods on the cloud layer and

only moves the ML service to the cloud layer when there is no remaining capacity at

the edge. Conversely, DQN is more inclined to place pods predominantly in the cloud

layer, regardless of edge capacity.

The key to this pattern lies in the execution and network trade-offs: cloud nodes typically

offer lower internal service execution times, which benefits ML, Back-End, and DB

services, leading to DQN’s better performance for these individual services. However,

the network latency between the end user and the cloud nodes can be higher. PPO’s

approach, which strategically distributes pods, taking advantage of both cloud and edge

resources, allows it to achieve a balanced reduction in latency. This results in better

overall performance for the Front-End service and lower end-to-end latency, especially

when the pod count is 12 or 20, where the network delay becomes a more significant

factor.

Figure 6.6: Execution time of Front-End, Back-End, ML, and DB services in
Aggregator-Sequential across different algorithms. Each service’s execution time
contributes to the overall end-to-end application latency.

Evaluation 84

By comparing the performance of various algorithms on the end-to-end latency across

three MSA applications, the PPO rescheduling algorithm consistently demonstrated su-

perior results compared to both heuristic-based approaches and the DQN rescheduling

algorithm in most configurations. Analyzing the execution times of individual services

provided deeper insights into how each service contributes to the overall end-to-end la-

tency. Specifically, the optimization strategies employed by PPO effectively reduced the

execution time of critical services, thereby minimizing delays along the service invocation

paths.

6.6.3 Evaluation of Pod Distributions

In this section, we analyze the pod placement data by generating pod distributions

for each service’s pods scheduled by different algorithms across various types of nodes.

This analysis provides insights into how each rescheduling and scheduling algorithm

distributes pods from different services over distinct node types. We evaluated the results

separately for three MSA applications, utilizing the maximum 20-pod configuration to

reveal more intricate distribution patterns.

6.6.3.1 Chain

For the Chain application, Figure 6.7 presents four subgraphs, each corresponding to a

microservice. Each subgraph contains bar charts representing the percentage of pods

distributed on different type of computing nodes, where the x-axis indicates node types

(Edge-A, Edge-B, Cloud-A) with different computational capabilities as discussed in

Section 4.1.2, and the y-axis shows the percentage of pod distribution (ranging from 0

to 1). These distributions illustrate how different algorithms contribute to scheduling

pods across various nodes.

For the Front-End service, the PPO algorithm exclusively places pods on Edge-A and

Edge-A nodes, with a majority located on Edge-A. Notably, PPO does not schedule any

Front-End pods on cloud nodes throughout the 100 repeated experiments. DQN also

places most Front-End pods on edge nodes but occasionally schedules them on the cloud.

In contrast, other scheduling algorithms display more balanced distributions: Cloud-

First allocates more pods to cloud nodes, while Edge-First assigns a greater proportion

to edge nodes.

Regarding the Back-End service, both PPO and DQN distribute pods across all three

node types, though with distinct patterns. PPO tends to place more Back-End pods on

cloud nodes and often allocates them to Edge-A, whereas DQN prefers edge nodes more.

Evaluation 85

As the Back-End service has a moderate workload, placing it on Edge-A or Edge-A nodes

can reduce end-to-end latency due to the availability of more computing resources. The

Cloud-First algorithm predominantly schedules Back-End pods to cloud nodes, with

significantly fewer placed on edge nodes. In contrast, Edge-First and Default distribute

Back-End pods more evenly across all node types.

A critical observation for the ML service is that PPO exclusively schedules ML pods

on cloud nodes, setting it apart from other algorithms. This placement strategy has

proven to be an effective optimization, as discussed later. DQN, however, distributes

ML pods across all three node types, with a notable preference for Edge-A nodes. For

the DB service, PPO similarly learns to place all DB pods on cloud nodes, ensuring

high computational efficiency. DQN, by comparison, frequently places DB pods on edge

nodes. Other scheduling algorithms show a more distributed approach, spreading DB

pods across all node types.

These results highlight distinct scheduling behaviors. PPO’s strategy of concentrating

ML and DB services on cloud nodes reflects a targeted approach to reduce execution

times for resource-intensive tasks while balancing Front-End and Back-End placements

across edge nodes to optimize overall latency. DQN’s more dispersed pod placement

may lead to varied performance outcomes, as it does not consistently capitalize on the

computational advantages of specific node types.

Evaluation 86

Figure 6.7: Pod distribution of Chain application services placed by different
algorithms across three node types (Cloud-A, Edge-A, Edge-B). The proposed PPO
algorithm tends to schedule the Front-End on Edge-A nodes, ML and DB services on
Cloud-A nodes, and distributes the Back-End service more evenly across all node
types.

The placement pattern observed from these results shows why PPO generates the overall

best end-to-end application latency. Figure 6.8 shows an abstract placement resulting

from the rescheduling of PPO and alone with an invocation pattern of Chain application,

where each circle represents that the pods from specific services are deployed in the node.

In the resulting placement, ML and DB are only placed on the cloud layer, while Front-

End is only placed on the edge layer. Even though DB is a lightweight task, PPO learns

to schedule it alone with ML to the cloud layers so that the request from ML is not

forwarded to the edge layer, which could lead to extra latency. As shown in the Figure,

the Chain application only has one calling path, by utilizing such placement, all the

requests from the users will only need to go through between the cloud and edge layer

once, which incurs minimum layer-to-layer latency.

Evaluation 87

Figure 6.8: Chain application placement generated by PPO. The right side shows
the Chain application’s invocation pattern for reference. The PPO policy tends to
place the heavy-lifting ML task and its related DB services on cloud nodes, while
keeping lightweight tasks on the edge layer.

6.6.3.2 Aggregator-Parallel

Figure 6.9 illustrates the pod placement distribution for the Aggregator-Parallel appli-

cation. In this scenario, the Cloud-First, Default, and Edge-First algorithms produced

similar results across different tested MSA applications, as these applications only differ

in their invocation patterns. Therefore, the discussion will primarily focus on the pod

distribution strategies of the PPO and DQN algorithms.

Unlike the Chain application, where PPO predominantly placed Front-End services on

edge nodes, for the Aggregator-Parallel application, PPO now allocates Front-End pods

to cloud nodes. Both PPO and DQN distribute Front-End pods across all three types of

nodes, with PPO showing a preference for Edge-A nodes, while DQN tends to allocate

more to Edge-A nodes.

For the Back-End service, both algorithms continue to place pods across all node types.

However, PPO generally assigns more Back-End pods to the edge layer, while DQN

favors cloud nodes. The distribution patterns for the ML and DB services are consistent

with those observed in the Chain application: PPO places almost all ML and DB pods

on cloud nodes, whereas DQN distributes ML pods across all three node types.

Evaluation 88

Figure 6.9: Pod distribution of Chain application services placed by different
algorithms across three node types (Cloud-A, Edge-A, Edge-B). Compared to baseline
methods, PPO places all ML and DB services on Cloud-A nodes, while distributing
the Front-End and Back-End services across edge nodes.

The end-to-end latency results from Section 6.6.1 confirm that PPO provides the most

effective scheduling policy for the underlying workloads. Figure 6.10 depicts a pod

placement generated by PPO. Compared to the Chain application, PPO’s strategy of

placing both Front-End and Back-End pods on the cloud layer still achieves relatively

low end-to-end latency. This is mainly because, in the Aggregator-Parallel setup, the

Front-End service performs concurrent calls to both the ML and Back-End services,

leading the overall latency to be determined by the longest of these concurrent paths.

The potential worst-case scenario, where a cloud-hosted Front-End service calls a Back-

End service located on the edge layer, is mitigated by the fact that this call occurs

concurrently with a call to the ML service. Thus, the overall external service calling

time for the front-end is not significantly impacted.

Evaluation 89

Figure 6.10: Aggregator-Parallel application placement generated by PPO. The
right side shows the application’s invocation pattern for reference. Similar to the
Chain application pattern, the PPO policy places the heavy-lifting ML task and its
associated DB service on cloud nodes, while keeping lightweight tasks on the edge
layer.

In the Aggregator-Parallel Application, The main advantage of PPO’s placement policy

over other algorithms lies in its consistent co-location of ML and DB services on the

cloud layer. This minimizes latency along the ML service’s invocation path, ensuring

that critical processing tasks have the lowest possible delays. Consequently, this opti-

mization underpins PPO’s ability to deliver superior end-to-end latency compared to

other scheduling algorithms, effectively leveraging cloud resources to streamline compu-

tationally intensive operations.

6.6.3.3 Aggregator-Sequential

Figure 6.11 presents the pod distribution results for the Aggregator-Sequential applica-

tion. Similar to the Chain application, PPO places the majority of Front-End service

pods on the edge layer, showing a preference for Edge-A nodes. In contrast, DQN dis-

tributes Front-End pods more evenly across different node types. For the Back-End

service, PPO continues to prioritize placement on edge nodes. However, for the ML

service, PPO shifts its strategy and begins to prioritize cloud nodes, while DQN prefers

to schedule ML pods on both Edge-A and Edge-A nodes. For the DB service, PPO

predominantly schedules pods to the edge layer.

Evaluation 90

Figure 6.11: Pod distribution of Aggregator-Sequential application services placed
by different algorithms across three node types (Cloud-A, Edge-A, Edge-B).
Compared to baseline methods, PPO places Front-End, Back-End, and DB primarily
on edge nodes, while assigning the computationally intensive ML tasks to cloud nodes.

In the Aggregator-Sequential application, PPO has learned to prioritize placing compu-

tationally intensive microservices, such as ML, on cloud nodes, while maintaining most

other service pods on the edge layer. Figure 6.12 illustrates a typical placement out-

come generated by PPO, where only the ML and Back-End services are positioned on

the cloud layer, while all other services are retained on edge nodes.

This strategic placement is crucial because, in the Aggregator-Sequential setup, the

Front-End service sequentially invokes other services, aggregating their responses to

produce the final result. The overall execution time of the Front-End service is the cu-

mulative latency of each service it calls. By offloading the ML service to the cloud, PPO

ensures that the most resource-intensive and computationally demanding microservice

is hosted on nodes capable of handling such workloads efficiently. This approach also

ensures that sufficient resources remain available on the edge layer to provision other

services, benefiting from the naturally lower latency of edge nodes. Consequently, this

configuration helps optimize the overall latency of the application by balancing compu-

tational demands with network efficiency.

Evaluation 91

Figure 6.12: Aggregator-Sequential application placement generated by PPO. The
right side shows the application’s invocation pattern. In this case, as the Front-End
server sequentially calls ML, DB, and Back-End, PPO makes a best effort to place all
tasks except ML on edge nodes, yielding significant results in reducing end-to-end
latency.

6.6.4 Evaluation of Adaptability to Cluster Dynamic Changes

In this experiment, we designed a node failure scenario to evaluate the adaptability of

proposed rescheduling algorithm to cluster dynamic changes. Each experiment starts

by deploying the MSA application on the testbed alongside the respective scheduling

or rescheduling algorithms. A simulated node failure event is triggered at a specific

time, resulting in the failure of one Edge-A type and one Cloud-A type node in the

testbed. Consequently, all pods from the MSA application on these failed nodes are

scheduled to the remaining available nodes through Kubernetes’ self-healing mechanisms.

As described in Section 6.5.2, the rescheduling algorithms, PPO and DQN, work in

conjunction with the Kubernetes Default Scheduler to optimize pod placement after the

initial deployment. By contrast, the heuristic scheduling algorithms directly manage

pod placement during the initial scheduling process.

This design of this experimental setup allows us to examine each algorithm’s ability to

adapt to dynamic changes in resource availability and its effectiveness in maintaining

latency stability during node failures. Throughout the experiment, time-series data on

end-to-end latency is collected, providing insights into each algorithm’s capability not

only to minimize application latency but also to control latency fluctuations and spikes

under changing conditions.

Evaluation 92

6.6.4.1 Chain

Figure 6.13 illustrates the end-to-end latency of the Chain application over time, re-

sulting from different underlying scheduling or rescheduling algorithms. Each subgraph

corresponds to a specific algorithm and displays the application’s latency variations

throughout the experiment. Due to significant fluctuations in latency within the cloud-

edge continuum environment, we also include a moving average line in each subgraph

to better represent overall latency trends. The moving average smooths out short-term

variations by averaging the past data points, providing a clearer view of latency patterns

over time. In this research, we set the number of averaging data points to 30.

PPO Avg PPO Avg
Avg

PPO Avg

Avg

PPO Avg

Avg

PPO Avg

Avg

Figure 6.13: Latency trends for Chain across algorithms. Rescheduling events are
marked with yellow triangles in PPO and DQN, and node failures are marked with
orange pentagons across all algorithms. Each sub-graph shows PPO’s latency as a
blue dashed line, comparing its average latency to each algorithm’s average (red
dashed line). PPO outperforming all algorithms overall, effectively reducing
fluctuations and eliminating spikes.

Evaluation 93

In each subgraph, the orange pentagon markers represent node failure events. In the

subgraphs for the rescheduling algorithms PPO and DQN, yellow triangle markers indi-

cate pod rescheduling events initiated by these algorithms. Additionally, each subgraph

includes a black dashed line showcasing the average latency over the entire experiment.

Overall, PPO shows superior results in maintaining low latencies, where 85% of requests

are maintained under 250 ms, compared to 76.9%, 35.5%, 46.2%, and 46.7% as achieved

by the DQN, Cloud-First , Edge-First, and Default algorithms. Our first observation

from the results is that the latency of MSA applications under the heuristic baselines

exhibits significant fluctuations, with numerous latency spikes. As discussed in Sec-

tion 6.6.3, the placement of application pods within a cloud-edge environment greatly

impacts end-to-end latency. Given that each service in our MSA application can in-

clude multiple replica pods distributed across different nodes, the end-to-end latency

varies considerably depending on the specific pods to which user requests are routed.

This variability implies that suboptimal pod placement within any service can lead to

substantial latency fluctuations.

For the heuristic scheduling algorithms—Cloud-First, Edge-First, and Default—the la-

tency consistently fluctuates between 200 ms and 350 ms, with numerous spikes reaching

up to 500 ms. Among all heuristic baselines, Default has fewer requests exceeding 400 ms

in latency, accounting for 12.21% of the total requests, whereas the other two heuristic

baselines Cloud-First and Edge-First have a higher proportion of high-latency requests

(over 400 ms), accounting for 16.73% and 15.37% of the total requests. After the node

failure events, the overall latency resulting from the Edge-First pod placement slightly

increases, whereas the other heuristic algorithms maintain a similar level of end-to-end

latency.

Compared to the heuristic baselines, the latency produced by the DQN rescheduling

algorithm also exhibits fluctuations; however, following rescheduling actions, the number

of requests with latency below 250 ms rises significantly, which is 76.9% compared to the

35.5%, 46.2%, and 46.7% of the Cloud-First, Edge-First, and Default algorithm, shows

its improvement over the heuristics algorithms. This adjustment yields an average end-

to-end latency of 234.41 ms for DQN, notably lower than the baseline latencies of 274.11

ms, 263.28 ms, and 263.05 ms, respectively. In response to a node failure, DQN performs

three pods rescheduling to optimize pod placement. This rescheduling leads to a more

stable end-to-end latency compared to the heuristic baselines’ pod placement after node

failure, with less fluctuation. In response to a node failure, DQN initiates three pod

rescheduling actions to optimize pod placement. This results in slightly increased overall

latency compared to the time before the failure and a relatively stable latency curve,

though fluctuations remain evident.

Evaluation 94

The PPO strategy demonstrates superior performance in reducing latency fluctuations

for MSA applications. Compared to other strategies, PPO maintains a significantly

more stable latency curve with fewer spikes after rescheduling actions. During the whole

experiment process, PPO maintains 86.9% of the request latencies under 250 ms. Before

the node failures, all request latencies are kept under 300 ms, with most concentrated

under 200 ms. After the node failure, the end-to-end latency initially spikes, but after

four rescheduling steps performed by PPO, the overall latency is again controlled under

300 ms, with much less fluctuation compared to others. Although the overall end-to-end

latency after the node failure is slightly higher than before, it remains around 200 ms.

The average end-to-end latency of PPO is 215.98 ms, which significantly outperforms

the other baselines.

6.6.4.2 Aggregator-Parallel

Figure 6.14 displays the end-to-end latency of the Aggregator-Parallel application over

time. Similar to observations from the Chain application, the latency fluctuations for

heuristic-based scheduling algorithms remain significant, with application latency con-

sistently fluctuating between 150 ms and 300 ms. Regarding the average latency over

the experiment, the Cloud-First algorithm performs better, achieving a lower average

latency of 210.40 ms compared to 219.63 ms and 225.76 ms for the Edge-First and De-

fault, respectively. After the node failures occurred, the overall latency for Cloud-First

and Edge-First increased, while the overall latency for Default slightly decreased. A

possible explanation is that the node failures concentrated pods onto fewer computing

nodes. Since Default initially deploys pods sparsely across nodes, this unintended con-

centration could reduce internal communication delays within the application, leading

to a lower overall end-to-end latency.

Evaluation 95

PPO AvgPPO Avg
Avg

PPO Avg
Avg

PPO Avg
Avg

PPO Avg
Avg

Figure 6.14: Latency trends for Aggregator-Parallel across algorithms. In the
rescheduling algorithms PPO and DQN, rescheduling events are marked with yellow
triangles, and node failures are marked with orange pentagons across all algorithms.
Each sub-graph shows PPO’s latency as a blue dashed line, comparing its average
latency to each algorithm’s average (red dashed line). PPO outperforming all
algorithms, effectively reducing fluctuations and eliminating spikes.

For the rescheduling-based algorithms, the latency trend pattern of DQN is similar to

that observed with the Chain application. Overall, the request latency fluctuates but

is slightly better than that of the heuristic scheduling algorithms, with more request

latencies falling under 250 ms. DQN performs two pod rescheduling actions before and

after the node failures, which is slightly fewer than in the Chain application, where

four and three rescheduling actions were issued, respectively. Although DQN slightly

reduces the application’s latency fluctuations, its average end-to-end latency of 214.63

ms is slightly worse than that of the Cloud-First approach (210.40 ms) but better than

the other heuristic baselines.

Evaluation 96

Compared to all other algorithms, PPO once again yields the best results in controlling

latency fluctuations, eliminating latency spikes, and lowering the overall application end-

to-end latency. After performing four pod reschedulings before the node failures, PPO

decreases the end-to-end latency to around 160 ms, maintaining fluctuations within 10

ms. During this period, the pod placement resulting from PPO’s rescheduling elimi-

nates latency spikes, with the highest recorded latency being 207 ms. After the node

failures, PPO issues three rescheduling actions and maintains a latency of around 190

ms. Although the overall latency and its fluctuations slightly increase, and a latency

spike is observed, this is a reasonable outcome given the reduced availability of com-

puting resources due to node failures. Importantly, PPO still outperforms all baseline

algorithms even after the node failures. The final average latency of PPO is 190.25 ms,

which is 10% less than that of the best baseline algorithm, Cloud-First.

6.6.4.3 Aggregator-Sequential

Figure 6.15 presents the results for the Aggregator-Sequential application. In this MSA

application, the results of the heuristic baselines are close, with average latencies during

the experiment of 264.43 ms for Cloud-First, 265.54 ms for Edge-First, and 265.22 ms

for Default. The fluctuation of the heuristics-based algorithms is substantial, and the

latency spikes are severe. After the node failures, all heuristic scheduling algorithms

produced even more latency spikes. Observed from the moving average lines, the overall

latency of Default increased, while the others remained essentially the same.

Evaluation 97

PPO Avg

PPO Avg

Avg

PPO Avg

Avg

PPO Avg

Avg

PPO Avg
Avg

Figure 6.15: Latency trends for Aggregator-Sequential across algorithms. In the
rescheduling algorithms PPO and DQN, rescheduling events are marked with yellow
triangles, and node failures are marked with orange pentagons across all algorithms.
Each sub-graph shows PPO’s latency as a blue dashed line, comparing its average
latency to each algorithm’s average (red dashed line). PPO outperforming all
algorithms, effectively reducing fluctuations and eliminating spikes.

The performance of DQN in Aggregator-Sequential is noteworthy. Before the node

failures, the DQN agent performs only one rescheduling action. Notably, compared to

the heuristic baselines, the latency fluctuation, spikes, and overall latency indicated by

the moving average show no improvement after this pod rescheduling. After the node

failures, DQN issues two pod rescheduling actions, which significantly reduce latency

fluctuations and spikes, lowering the overall latency.

Upon examining the first pod rescheduling made by DQN, we found that DQN produced

an invalid rescheduling action after the initial rescheduling, and therefore no subsequent

rescheduling was performed. As discussed in Section 4.4.3, unlike the PPO agent used

Conclusion 98

in this study, the value-based DQN agent is not able to employ the invalid action mask

mechanism designed to prevent the generation of invalid rescheduling actions. Conse-

quently, in this case, DQN was unable to produce any further optimization after the

invalid rescheduling action was attempted. After the node failures, the resource avail-

ability of the cluster changed, allowing DQN to generate subsequent valid rescheduling

actions and further optimize pod placement. The average end-to-end latency across

the whole experiment for DQN is 241.35ms, which outperforms the other baseline algo-

rithms.

In this scenario, PPO continues to significantly outperform the other baselines. Before

the node failures, PPO issues five rescheduling actions, reducing the overall latency to

around 200 ms, with fluctuations controlled within ±20 ms. Compared to the other base-

lines, the latency spikes before node failures after the rescheduling process are minimal,

with only one request spiking to 300 ms. After the node failures, the latency spikes to

around 400 ms due to the node failures. PPO then performs three rescheduling actions

to bring down the overall latency to around 225 ms. Compared to the time before node

failures, the request latency fluctuation remains at a similar level, with a slight increase

in request spikes, which are mostly within 300 ms. The average request latency of PPO

is 220.01 ms, which is 15% less than that of the heuristic baseline algorithms and over

8% less compared to DQN.

Throughout this experiment, PPO demonstrates outstanding performance compared to

the baseline DQN rescheduling algorithm and the heuristic scheduling algorithms. Not

only does PPO achieve a lower average end-to-end latency, but it also effectively controls

latency fluctuations that may result from suboptimal service pod placement. Further-

more, when faced with resource availability changes in the cloud-edge continuum due to

node failures, the PPO rescheduling algorithm optimizes pod placement based on the

remaining resources and maintains both end-to-end latency and latency stability at an

exceptional level. This adaptability highlights PPO’s capability to respond to dynamic

changes in the cloud-edge environment, ensuring resilient and efficient performance.

Chapter 7

Conclusions and Future

Directions

7.1 Overview

In this thesis, we introduced a novel rescheduling algorithm designed to optimize mi-

croservice placement within hybrid cloud-edge environments by dynamically adjusting

active service placements. Unlike conventional methods that require rescheduling the

entire MSA application, our algorithm performs real-time, non-disruptive adjustments,

updating only partial pod placements as needed. This selective rescheduling minimizes

overhead and maintains application continuity. Compared to baseline approaches, our

method yields significant benefits, including reduced end-to-end latency, decreased fluc-

tuations in request latency, and the prevention of latency spikes during node failure

scenarios. These improvements underscore the effectiveness of our approach in main-

taining performance stability and responsiveness in dynamic, distributed environments.

Additionally, the work presented in this thesis forms the basis of a forthcoming publica-

tion with the same title. This paper provides an in-depth explanation of our methodol-

ogy for developing and implementing the reinforcement learning (RL)-based reschedul-

ing algorithm, alongside a detailed modeling approach for Microservice Architecture

(MSA) applications within the cloud-edge continuum. Furthermore, it presents a rig-

orous performance evaluation of the algorithm using a realistic Kubernetes cloud-edge

testbed, which includes simulations of node failure scenarios to demonstrate the algo-

rithm’s resilience and adaptability. This research is being prepared for submission to

IEEE Transactions on Parallel and Distributed Systems 1.

1https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71

99

Conclusion 100

7.2 Contributions

In summary, this work makes three primary contributions. First, we introduce a novel

MSA scheduling algorithm designed to dynamically reschedule microservices, maintain-

ing optimal placement as computing resource availability changes. Unlike traditional

scheduling methods that reallocate the entire MSA application in response to system

changes, our approach performs minimal, targeted rescheduling steps, ensuring efficient

adaptability with reduced operational overhead.

The second key contribution is the development of a reinforcement learning (RL)-based

approach to derive a rescheduling policy tailored for MSA applications in a cloud-edge

continuum. Previous RL-based scheduling methods have struggled to capture the com-

plex characteristics of heterogeneous computing resources and the intricate service in-

vocation patterns inherent in MSA applications. To address this, we model both the

diverse cloud-edge computing resources and the MSA application’s directed acyclic graph

(DAG)-based invocation patterns, incorporating these into our RL simulation environ-

ment. This environment allows the RL agent to learn rescheduling policies that are re-

sponsive to both cloud-edge resource heterogeneity and the unique topological demands

of MSA applications.

Our third contribution is the adaptation and deployment of the RL-based scheduling

algorithm on a real-world Kubernetes cloud-edge continuum testbed. Given that the

Kubernetes scheduler does not natively support rescheduling operations, we developed

a plugin to enhance its capabilities, allowing it to monitor running applications and

execute rescheduling actions as needed. We deployed the trained RL agent within this

modified testbed with this plugin, and extensive experiments demonstrated that pro-

posed scheduling algorithm consistently outperforms three heuristic baselines and one

RL-based baseline. Specifically, it achieves lower end-to-end latency, reduces latency

fluctuations, and eliminates latency spikes for MSA applications even under conditions

of computing node failure.

Based on our works, the research questions raised in Section 1.1 can be answered:

• Research Question 1: : We model the cloud-edge continuum’s heterogeneous

computing resources and the MSA application’s network topology. By integrating

this model into the RL simulation environment and optimizing for end-to-end

latency, the resulting scheduling algorithm effectively minimizes MSA application

latency across the cloud-edge continuum.

• Research Question 2: RL model incorporates a rescheduling action design and

a reward function that accounts for rescheduling costs, enabling it to optimize

Bibliography 101

MSA application placement with minimal rescheduling. This RL-based scheduling

algorithm efficiently optimizes placement while outperforming baseline scheduling

methods with fewer rescheduling steps.

7.3 Future Work

In this work, we modeled the network latency of cloud and edge computing nodes based

solely on their deployment layers (cloud or edge). For future research, we plan to incor-

porate more sophisticated network models, such as detailed underlying network device

topologies and variable network latencies between different nodes within the cloud-edge

continuum. Additionally, while our current focus is on optimizing end-to-end applica-

tion latency, future studies could include additional optimization objectives like band-

width utilization, computing resource utilization, and microservice application availabil-

ity. Moreover, the proposed rescheduling algorithms can be integrated with autoscaling

mechanisms to jointly determine the placement of MSA applications. We intend to ex-

plore this scenario in future work, optimizing our rescheduling mechanism to effectively

respond to varying user workloads in conjunction with autoscale.

Bibliography

[1] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. The char-

acteristics of cloud computing. In 2010 39th International Conference on Parallel

Processing Workshops, pages 275–279. IEEE, 2010.

[2] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[3] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge

computing research. IEEE access, 8:85714–85728, 2020.

[4] Sergio Moreschini, Fabiano Pecorelli, Xiaozhou Li, Sonia Naz, David Hästbacka,

and Davide Taibi. Cloud continuum: The definition. IEEE Access, 10:131876–

131886, 2022.

[5] Sergio Moreschini, Fabiano Pecorelli, Xiaozhou Li, Sonia Naz, David Hästbacka,

and Davide Taibi. Cloud Continuum: The Definition. IEEE Access, 10:131876–

131886, 2022. ISSN 2169-3536. doi: 10.1109/ACCESS.2022.3229185.

[6] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping study in

microservice architecture. In 2016 IEEE 9th international conference on service-

oriented computing and applications (SOCA), pages 44–51. IEEE, 2016.

[7] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, and Minyi Guo. Adaptive Resource

Efficient Microservice Deployment in Cloud-Edge Continuum. IEEE Transactions

on Parallel and Distributed Systems, 33(8):1825–1840, August 2022. ISSN 1558-

2183. doi: 10.1109/TPDS.2021.3128037.

[8] Xiang He, Hanchuan Xu, Xiaofei Xu, Yin Chen, and Zhongjie Wang. An effi-

cient algorithm for microservice placement in cloud-edge collaborative computing

environment. IEEE Transactions on Services Computing, 2024.

[9] Amanda Jayanetti, Saman Halgamuge, and Rajkumar Buyya. Deep reinforcement

learning for energy and time optimized scheduling of precedence-constrained tasks

in edge–cloud computing environments. Future Generation Computer Systems, 137:

14–30, December 2022. ISSN 0167739X. doi: 10.1016/j.future.2022.06.012.

102

Bibliography 103

[10] Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya. Placement of

Microservices-based IoT Applications in Fog Computing: A Taxonomy and Fu-

ture Directions. ACM Computing Surveys, 55(14s):321:1–321:43, July 2023. ISSN

0360-0300. doi: 10.1145/3592598.

[11] Lixing Chen, Yang Bai, Pan Zhou, Youqi Li, Zhe Qu, and Jie Xu. On Adaptive

Edge Microservice Placement: A Reinforcement Learning Approach Endowed with

Graph Comprehension. IEEE Transactions on Mobile Computing, pages 1–15, 2024.

ISSN 1558-0660. doi: 10.1109/TMC.2024.3396510.

[12] Jayachander Surbiryala and Chunming Rong. Cloud Computing: History

and Overview. In 2019 IEEE Cloud Summit, pages 1–7. doi: 10.1109/

CloudSummit47114.2019.00007.

[13] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):

52–59, 1997.

[14] Miguel L Bote-Lorenzo, Yannis A Dimitriadis, and Eduardo Gómez-Sánchez. Grid

characteristics and uses: a grid definition. In European Across Grids Conference,

pages 291–298. Springer, 2003.

[15] Omar Al-Debagy and Peter Martinek. A comparative review of microservices and

monolithic architectures. In 2018 IEEE 18th International Symposium on Compu-

tational Intelligence and Informatics (CINTI), pages 000149–000154. IEEE, 2018.

[16] Kapil Bakshi. Microservices-based software architecture and approaches. In 2017

IEEE aerospace conference, pages 1–8. IEEE, 2017.

[17] Tomas Cerny, Michael J Donahoo, and Michal Trnka. Contextual understanding

of microservice architecture: current and future directions. ACM SIGAPP Applied

Computing Review, 17(4):29–45, 2018.

[18] Partha Pratim Ray, Dinesh Dash, and Debashis De. Edge computing for internet of

things: A survey, e-healthcare case study and future direction. Journal of Network

and Computer Applications, 140:1–22, 2019.

[19] Nathan Cruz Coulson, Stelios Sotiriadis, and Nik Bessis. Adaptive microservice

scaling for elastic applications. IEEE Internet of Things Journal, 7(5):4195–4202,

2020.

[20] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, and D. Cassioli. Latency-Aware

Kubernetes Scheduling for Microservices Orchestration at the Edge. In 2023 IEEE

9th International Conference on Network Softwarization (NetSoft), pages 426–431,

June 2023. doi: 10.1109/NetSoft57336.2023.10175431.

Bibliography 104

[21] Ying Xie, Yuanwei Zhu, Yeguo Wang, Yongliang Cheng, Rongbin Xu,

Abubakar Sadiq Sani, Dong Yuan, and Yun Yang. A novel directional and non-

local-convergent particle swarm optimization based workflow scheduling in cloud–

edge environment. Future Generation Computer Systems, 97:361–378, August 2019.

ISSN 0167-739X. doi: 10.1016/j.future.2019.03.005.

[22] Panagiotis Gkonis, Anastasios Giannopoulos, Panagiotis Trakadas, Xavi Masip-

Bruin, and Francesco D’Andria. A Survey on IoT-Edge-Cloud Continuum Sys-

tems: Status, Challenges, Use Cases, and Open Issues. Future Internet, 15(12):383,

December 2023. ISSN 1999-5903. doi: 10.3390/fi15120383.

[23] Ion-Dorinel Filip, Florin Pop, Cristina Serbanescu, and Chang Choi. Microservices

Scheduling Model Over Heterogeneous Cloud-Edge Environments As Support for

IoT Applications. IEEE Internet of Things Journal, 5(4):2672–2681, August 2018.

ISSN 2327-4662. doi: 10.1109/JIOT.2018.2792940.

[24] Optimal Deployment of Fog Nodes, Microservices and SDN Controllers in

Time-Sensitive IoT Scenarios | IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9685995.

[25] John Paul Martin, A. Kandasamy, and K. Chandrasekaran. CREW: Cost and

Reliability aware Eagle-Whale optimiser for service placement in Fog. Software:

Practice and Experience, 50(12):2337–2360, 2020. ISSN 1097-024X. doi: 10.1002/

spe.2896.

[26] Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya. QoS-aware place-

ment of microservices-based IoT applications in Fog computing environments. Fu-

ture Generation Computer Systems, 131:121–136, June 2022. ISSN 0167-739X. doi:

10.1016/j.future.2022.01.012.

[27] Carlos Guerrero, Isaac Lera, and Carlos Juiz. Evaluation and efficiency comparison

of evolutionary algorithms for service placement optimization in fog architectures.

Future Generation Computer Systems, 97:131–144, August 2019. ISSN 0167-739X.

doi: 10.1016/j.future.2019.02.056.

[28] A lightweight decentralized service placement policy for performance optimization

in fog computing | Journal of Ambient Intelligence and Humanized Computing.

https://link.springer.com/article/10.1007/s12652-018-0914-0.

[29] A placement architecture for a container as a service (CaaS) in a cloud environment

| Journal of Cloud Computing. https://link.springer.com/article/10.1186/s13677-

019-0131-1.

Bibliography 105

[30] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. Serverless Computing: A

Survey of Opportunities, Challenges, and Applications. ACM Computing Surveys,

54(11s):239:1–239:32, November 2022. ISSN 0360-0300. doi: 10.1145/3510611.

[31] Samodha Pallewatta, Vassilis Kostakos, and Rajkumar Buyya. Microservices-based

IoT Application Placement within Heterogeneous and Resource Constrained Fog

Computing Environments. In Proceedings of the 12th IEEE/ACM International

Conference on Utility and Cloud Computing, UCC’19, pages 71–81, New York, NY,

USA, December 2019. Association for Computing Machinery. ISBN 978-1-4503-

6894-0. doi: 10.1145/3344341.3368800.

[32] Abbas Najafizadeh, Afshin Salajegheh, Amir Masoud Rahmani, and Amir Sahafi.

Privacy-preserving for the internet of things in multi-objective task scheduling in

cloud-fog computing using goal programming approach. Peer-to-Peer Networking

and Applications, 14(6):3865–3890, November 2021. ISSN 1936-6450. doi: 10.1007/

s12083-021-01222-2.

[33] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. A Deep Re-

inforcement Learning based Algorithm for Time and Cost Optimized Scaling of

Serverless Applications, August 2023.

[34] Wenkai Lv, Pengfei Yang, Tianyang Zheng, Chengmin Lin, Zhenyi Wang, Minwen

Deng, and Quan Wang. Graph-Reinforcement-Learning-Based Dependency-Aware

Microservice Deployment in Edge Computing. IEEE Internet of Things Journal,

11(1):1604–1615, January 2024. ISSN 2327-4662. doi: 10.1109/JIOT.2023.3289228.

[35] Francescomaria Faticanti, Marco Savi, Francesco De Pellegrini, Petar Kochovski,

Vlado Stankovski, and Domenico Siracusa. Deployment of Application Microser-

vices in Multi-Domain Federated Fog Environments. In 2020 International Con-

ference on Omni-layer Intelligent Systems (COINS), pages 1–6, August 2020. doi:

10.1109/COINS49042.2020.9191379.

[36] Shuiguang Deng, Zhengzhe Xiang, Javid Taheri, Mohammad Ali Khoshkholghi,

Jianwei Yin, Albert Y. Zomaya, and Schahram Dustdar. Optimal Application

Deployment in Resource Constrained Distributed Edges. IEEE Transactions on

Mobile Computing, 20(5):1907–1923, May 2021. ISSN 1558-0660. doi: 10.1109/

TMC.2020.2970698.

[37] Yihong Li, Xiaoxi Zhang, Tianyu Zeng, Jingpu Duan, Chuan Wu, Di Wu,

and Xu Chen. Task Placement and Resource Allocation for Edge Ma-

chine Learning: A GNN-based Multi-Agent Reinforcement Learning Paradigm.

https://arxiv.org/abs/2302.00571v2, February 2023.

Bibliography 106

[38] Wenkai Lv, Quan Wang, Pengfei Yang, Yunqing Ding, Bijie Yi, Zhenyi Wang, and

Chengmin Lin. Microservice Deployment in Edge Computing Based on Deep Q

Learning. IEEE Transactions on Parallel and Distributed Systems, 33(11):2968–

2978, November 2022. ISSN 1558-2183. doi: 10.1109/TPDS.2022.3150311.

[39] Valentino Armani, Francescomaria Faticanti, Silvio Cretti, Seungwoo Kum, and

Domenico Siracusa. A Cost-Effective Workload Allocation Strategy for Cloud-

Native Edge Services, October 2021.

[40] Feiyan Guo, Bing Tang, and Mingdong Tang. Joint optimization of delay and cost

for microservice composition in mobile edge computing. World Wide Web, 25(5):

2019–2047, September 2022. ISSN 1573-1413. doi: 10.1007/s11280-022-01017-2.

[41] Muhammad Usman, Simone Ferlin, Anna Brunstrom, and Javid Taheri. A Survey

on Observability of Distributed Edge & Container-Based Microservices. IEEE Ac-

cess, 10:86904–86919, 2022. ISSN 2169-3536. doi: 10.1109/ACCESS.2022.3193102.

[42] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–

1948 vol.4, November 1995. doi: 10.1109/ICNN.1995.488968.

[43] Abdullah Alelyani, Amitava Datta, and Ghulam Mubashar Hassan. Optimiz-

ing Cloud Performance: A Microservice Scheduling Strategy for Enhanced Fault-

Tolerance, Reduced Network Traffic, and Lower Latency. IEEE Access, 12:35135–

35153, 2024. ISSN 2169-3536. doi: 10.1109/ACCESS.2024.3373316.

[44] Adyson Magalhães Maia and Yacine Ghamri-Doudane. A Deep Reinforcement

Learning Approach for the Placement of Scalable Microservices in the Edge-to-

Cloud Continuum. In GLOBECOM 2023 - 2023 IEEE Global Communications

Conference, pages 479–485, Kuala Lumpur, Malaysia, December 2023. IEEE. ISBN

9798350310900. doi: 10.1109/GLOBECOM54140.2023.10437143.

[45] Lulu Chen, Yangchuan Xu, Zhihui Lu, Jie Wu, Keke Gai, Patrick C. K. Hung, and

Meikang Qiu. IoT Microservice Deployment in Edge-Cloud Hybrid Environment

Using Reinforcement Learning. IEEE Internet of Things Journal, 8(16):12610–

12622, August 2021. ISSN 2327-4662. doi: 10.1109/JIOT.2020.3014970.

[46] Deep Reinforcement Learning for Multiobjective Optimization | IEEE Journals &

Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9040280.

[47] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. Deep rein-

forcement learning for application scheduling in resource-constrained, multi-tenant

serverless computing environments. Future Generation Computer Systems, 143:

277–292, June 2023. ISSN 0167-739X. doi: 10.1016/j.future.2023.02.006.

Bibliography 107

[48] Lin Gu, Deze Zeng, Jie Hu, Bo Li, and Hai Jin. Layer aware microservice placement

and request scheduling at the edge. In IEEE INFOCOM 2021-IEEE Conference on

Computer Communications, pages 1–9. IEEE, 2021.

[49] Martin L Puterman. Markov decision processes. Handbooks in operations research

and management science, 2:331–434, 1990.

[50] Shengyi Huang and Santiago Ontañón. A Closer Look at Invalid Action Masking

in Policy Gradient Algorithms. The International FLAIRS Conference Proceedings,

35, May 2022. ISSN 2334-0762. doi: 10.32473/flairs.v35i.130584.

[51] Jianqing Fan, ZhaoranWang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis

of deep q-learning. In Learning for dynamics and control, pages 486–489. PMLR,

2020.

[52] Shangtong Zhang and Richard S Sutton. A deeper look at experience replay. arXiv

preprint arXiv:1712.01275, 2017.

[53] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[54] Andrea Detti, Ludovico Funari, and Luca Petrucci. µBench: An Open-Source

Factory of Benchmark Microservice Applications. IEEE Transactions on Parallel

and Distributed Systems, 34(3):968–980, March 2023. ISSN 1558-2183. doi: 10.

1109/TPDS.2023.3236447.

[55] Christopher G Atkeson and Juan Carlos Santamaria. A comparison of direct and

model-based reinforcement learning. In Proceedings of international conference on

robotics and automation, volume 4, pages 3557–3564. IEEE, 1997.

[56] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Modeling and simulation

of scalable cloud computing environments and the cloudsim toolkit: Challenges and

opportunities. In 2009 international conference on high performance computing &

simulation, pages 1–11. IEEE, 2009.

[57] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An environment

for performance evaluation of edge computing systems. Transactions on Emerging

Telecommunications Technologies, 29(11):e3493, 2018.

[58] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.

ifogsim: A toolkit for modeling and simulation of resource management techniques

in the internet of things, edge and fog computing environments. Software: Practice

and Experience, 47(9):1275–1296, 2017.

Bibliography 108

[59] Marko A Rodriguez and Peter Neubauer. The graph traversal pattern. In Graph

data management: Techniques and applications, pages 29–46. IGI global, 2012.

[60] Christo Boshoff. An experimental study of service recovery options. International

Journal of service industry management, 8(2):110–130, 1997.

	Abstract
	Declaration of Authorship
	Preface
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives and Contributions

	2 Background
	2.1 Cloud-Edge Continuum
	2.1.1 Cloud Computing
	2.1.2 Edge Computing
	2.1.3 Cloud-Edge Continuum

	2.2 Microservice Architecture Application
	2.2.1 Scalability and Fault Tolerance
	2.2.2 Network Topology
	2.2.3 Microservice Application Placement Problem in Cloud-Edge Continuum

	2.3 Container Orchestrator
	2.3.1 Overview
	2.3.2 Kubernetes
	2.3.3 Microservice Architecture Application Placement in Kubernetes

	3 Related Works
	3.1 Modeling Cloud-Edge Continuum Environments
	3.1.1 Compute Resource Modeling
	3.1.2 Network Modeling

	3.2 Microservice Placement Problem
	3.2.1 Microservice Invocation Patterns
	3.2.2 Microservice Application Placement Objectives

	3.3 Microservice Scheduling Algorithms
	3.3.1 Heuristics and Optimization Approaches
	3.3.2 Reinforcement Learning (RL) Approaches
	3.3.3 Summary

	4 Problem Formulation and RL-based Rescheduling Algorithm Design
	4.1 System Model
	4.1.1 Application Model
	4.1.2 Cloud-Edge Continuum Model

	4.2 Problem Formulation
	4.3 Reinforcement Learning (RL) Model
	4.4 RL-based Rescheduling Algorithms
	4.4.1 Deep Q-Learning
	4.4.2 Proximal Policy Optimization
	4.4.3 Handling Invalid Rescheduling Actions

	5 System Implementation
	5.1 Microservice Architecture Application
	5.2 RL Environment Design and Implementation
	5.2.1 The Proposed Reinforcement Learning Environment
	5.2.1.1 Profiling Data From Real-Word Environment
	5.2.1.2 Custom Configurations of CEEnv
	5.2.1.3 Simulating MSA Application End-To-End Latency

	5.3 RL Agent Training
	5.4 Rescheduling Plugin
	5.4.1 Rescheduling-Controller
	5.4.2 Rescheduling-Planner
	5.4.3 Rescheduling-Operator
	5.4.4 Pod rescheduling in Kubernetes

	5.5 MSA Application Profiler
	5.5.1 Profiling Data for CEEnv
	5.5.2 Latency Monitoring for rescheduler

	6 Performance Evaluation
	6.1 Convergence of the RL Agents
	6.2 Baseline Algorithms
	6.3 Cluster Setup
	6.3.1 Virtual Machine (VM) Setup
	6.3.2 Configurations for Cloud-Edge Continuum Testbed

	6.4 Metrics
	6.5 Experimental Settings
	6.5.1 End-To-End Latency Experiment Settings
	6.5.2 Node Failure Experiment Settings

	6.6 Results
	6.6.1 Evaluation of End-to-End Latency
	6.6.1.1 Rescheduling Algorithms Overhead

	6.6.2 Service Execution Time
	6.6.2.1 Chain
	6.6.2.2 Aggregator-Parallel
	6.6.2.3 Aggregator-Sequential

	6.6.3 Evaluation of Pod Distributions
	6.6.3.1 Chain
	6.6.3.2 Aggregator-Parallel
	6.6.3.3 Aggregator-Sequential

	6.6.4 Evaluation of Adaptability to Cluster Dynamic Changes
	6.6.4.1 Chain
	6.6.4.2 Aggregator-Parallel
	6.6.4.3 Aggregator-Sequential

	7 Conclusions and Future Directions
	7.1 Overview
	7.2 Contributions
	7.3 Future Work

