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Abstract

Quantum computing promises to address computationally intractable problems be-

yond the capabilities of classical computers in a variety of industrial sectors, such as

drug discovery, finance, machine learning, and cybersecurity. Cloud-based quantum

computing has emerged as a solution to the challenges of operating physical quantum

systems. This paradigm democratizes access to remote quantum computers through

cloud platforms, enabling the deployment of quantum applications. However, cur-

rent quantum computing environments are characterized by heterogeneous quantum

backends with varying capabilities, noise levels, and availability patterns. The limita-

tions of Noisy Intermediate-Scale Quantum (NISQ) devices create distinct scheduling

and orchestration complexities that are compounded by the hybrid nature of quantum-

classical workflows, where quantum tasks must be seamlessly integrated with classical

processing steps. Additionally, current quantum computing resources are limited in

capacity and costly, requiring efficient resource utilization. These challenges are fur-

ther exacerbated by the dynamic nature of quantum computing environments and the

need to balance execution fidelity with time constraints in practical quantum applica-

tions. Hence, quantum cloud providers require adaptive quantum application deploy-

ment and sophisticated resource management techniques to harness the full potential

of quantum computing tailored for application specific scenarios while accommodating

the inherent limitations of current quantum hardware and software.

This thesis focuses on adaptive resource management solutions for quantum cloud

computing environments by developing serverless architectures for seamless quantum

application deployment and reinforcement learning-based techniques for efficient task

orchestration with time-aware and fidelity-aware optimization. The research addresses

key challenges, including quantum hardware heterogeneity, hybrid quantum-classical
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workflow integration, dynamic backend selection, quantum task scheduling complexi-

ties, and the inherently noisy and time-sensitive nature of NISQ-era quantum systems.

The thesis advances the state-of-the-art by making the following key contributions:

1. A comprehensive systematic mapping study and taxonomy of quantum cloud

computing from different aspects, including service models, platforms, applica-

tions, resource management approaches, security, and privacy.

2. A holistic serverless quantum computing framework that enables seamless in-

tegration of quantum computation within classical cloud environments through

Quantum Function-as-a-Service (QFaaS) architecture with adaptive backend se-

lection, and cold start mitigation strategies.

3. A comprehensive modeling and discrete-event simulation framework for quan-

tum computing environments that facilitates systematic evaluation of quantum

resource management algorithms, incorporating realistic quantum system models

and multi-use case support.

4. A novel deep reinforcement learning-based approach for time-aware quantum

task placement using the Deep Q-Network technique to adapt to dynamic quan-

tum cloud environments and optimize task completion efficiency.

5. A fidelity-aware quantum task orchestration framework using deep reinforcement

learning that effectively balances execution fidelity and time constraints in NISQ-

era quantum systems through noise-aware performance modeling and Proximal

Policy Optimization approaches.

6. A detailed study outlining challenges and research directions for quantum cloud

resource management, establishing foundational approaches for future research to

advance quantum computing paradigms.
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Chapter 1

Introduction

Quantum computing is anticipated to be a transformative computational paradigm that

leverages quantum mechanical phenomena, superposition, entanglement, and interfer-

ence, to solve problems that are computationally intractable for classical computation

systems. Foundational algorithms by Shor [2] for integer factorization and Grover [3]

for unstructured database search demonstrate theoretical quantum advantage while

near-term quantum algorithms, such as the Quantum Approximate Optimization Algo-

rithm (QAOA) [4], Variational Quantum Eigensolver (VQE) [5], and quantum machine

learning approaches [6, 7], extend this potential to practical applications across diverse

industry domains including finances, pharmaceutical, cybersecurity, and optimization

[8]. The global quantum computing market demonstrates a substantial growth trajec-

tory, projected to expand from $1.6 billion in 2025 to $7.3 billion by 2030, representing

a compound annual growth rate of 34.6% [9]. The quantum market potential has also

catalyzed unprecedented governmental investment, whereas China leads with $15.3 bil-

lion in announced funding, followed by Japan at $9.2 billion and the United States at $6.0

billion, according to the McKinsey report as of June 2025 [10]

Quantum computing applications span multiple critical sectors where classical com-

putational approaches face fundamental limitations (as shown in Figure 1.1). In opti-

mization, variational quantum algorithms demonstrate the potential for complex com-

binatorial problems in logistics, portfolio optimization, and supply chain management

[11, 12]. Molecular simulation capabilities will enable unprecedented precision in phar-

maceutical research and materials science, accelerating drug discovery and novel mate-

rial design through quantum-enhanced modeling of electronic structures and chemical

interactions [13]. In cybersecurity, quantum algorithms simultaneously threaten existing

1
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Figure 1.1: Examples of Quantum Computing Applications

public-key cryptographic systems while enabling provably secure quantum key distri-

bution protocols [14]. Furthermore, quantum machine learning algorithms could offer

substantial speedups for specific pattern recognition and data analysis tasks, particu-

larly in high-dimensional feature spaces [6]. These and a number of other applications

of quantum computing have sparked significant research interest in developing new

algorithms and software solutions.

However, the current development of quantum computing applications faces many

infrastructure and accessibility challenges that distinguish it from classical computing.

Current quantum systems operate within the constraints of the Noisy Intermediate-

Scale Quantum (NISQ) era [15], characterized by limited qubit counts, high error rates,

and short coherence times. Hardware heterogeneity across competing quantum tech-

nologies, such as superconducting, trapped ions, and photonic systems, creates addi-

tional complexity for practical deployment. These diverse approaches create fragmented

ecosystems with different quantum software stacks and distinct operational require-

ments. Additionally, cost and accessibility barriers have historically limited quantum

computing to the general public.
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The emergence of cloud-based quantum computing paradigms has begun to address

these fundamental accessibility challenges, offering more democratized computational

resources through service-based models. This paradigmatic shift toward distributed

quantum computing environments has enabled broader participation in quantum ap-

plication development while introducing novel challenges in resource management, or-

chestration, and optimization that form the core focus of cloud-based quantum comput-

ing research, including this thesis.

1.1 Background and Motivations

1.1.1 Cloud-based Quantum Computing Environments

The Quantum-as-a-Service (QaaS) model has transformed quantum computing accessi-

bility by eliminating the substantial investment and specialized infrastructure require-

ments traditionally associated with operating quantum systems. Major cloud providers

have established comprehensive quantum cloud platforms that provide remote access to

diverse quantum processors through programmatic interfaces. IBM Quantum [16] pio-

neered public quantum cloud access in 2016, offering researchers and developers access

to superconducting quantum processors. Microsoft Azure Quantum [17] and Amazon

Braket [18] also provide heterogeneous platforms supporting multiple quantum hard-

ware technologies such as IonQ trapped-ion systems, Honeywell neutral atom proces-

sors, and Rigetti superconducting circuits, enabling cross-platform quantum algorithm

development and execution across different quantum hardware backends.

The hybrid quantum-classical computing paradigm has emerged as the predomi-

nant architectural model for practical quantum applications [19–21]. This paradigm is

envisioned to span a continuum of computational layers, extending from cloud and

edge computing environments to Internet of Things (IoT) devices, as illustrated in Fig-

ure 1.2. Such an architectural model enables seamless orchestration between quantum

processors for specialized computational tasks and classical systems for preprocessing,

postprocessing, and overall application coordination. This layered integration enhances

flexibility, scalability, and the practical deployment of quantum applications across het-
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Figure 1.2: High-level overview of hybrid quantum-classical computing environments

erogeneous environments. Several hybrid algorithms, which combine both quantum

and classical components, leverage classical optimization techniques to iteratively re-

fine quantum circuit parameters, exemplified by variational quantum algorithms such

as VQE [5] and QAOA [4]. Contemporary quantum cloud platforms support these

hybrid processes through sophisticated workflow orchestration systems that manage

data flow, resource allocation, and execution coordination across heterogeneous quan-

tum and classical infrastructure components. Recent developments in quantum cloud

computing have extended beyond basic circuit execution to encompass comprehensive

application development environments. For example, serverless quantum computing

enables function-as-a-service models that abstract quantum resource management com-

plexity from application developers (see Chapter 3). Many cloud-based quantum soft-

ware development frameworks and middleware [22–25] have also been proposed to

facilitate the hybrid quantum-classical software deployment. Furthermore, distributed

quantum computing techniques such as quantum circuit knitting [26] have been pro-

posed to enable the execution of quantum computing applications across different quan-

tum computing resources.
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1.1.2 Challenges in resource management for Quantum Computing

Cloud-based quantum computing environments exhibit distinct resource management

characteristics that fundamentally differentiate them from traditional cloud computing

models. The unique properties of quantum systems introduce multifaceted challenges

that require sophisticated approaches to system integration, resource orchestration, and

performance optimization across the quantum computing stack. There are several key

challenges, which are discussed below.

• System Integration and Deployment Complexity: The integration of quantum com-

puting into practical workflows necessitates seamless orchestration between clas-

sical preprocessing, quantum execution, and classical post-processing components

[20, 25]. Classical-quantum integration challenges arise from the need to coordi-

nate heterogeneous computational resources with vastly different execution mod-

els, data formats, and timing constraints. Legacy system compatibility presents

additional complexity as quantum applications must integrate with existing en-

terprise IT infrastructure, data pipelines, and security frameworks that were de-

signed for classical computing paradigms [27]. The adaptation of DevOps prac-

tices for quantum computing requires new approaches to continuous integration

and deployment that accommodate quantum algorithm development, circuit com-

pilation, and hardware-specific optimization [28].

• Quantum hardware and software heterogeneity: Quantum resource management faces

unprecedented challenges due to hardware heterogeneity manifested through in-

compatible instruction sets, varying gate fidelities, different qubit connectivity pat-

terns, and distinct calibration requirements across quantum platforms [29]. Re-

source fragmentation occurs through platform-specific software stacks such as Qiskit,

Cirq, and PennyLane, each utilizing different quantum intermediate representa-

tions that hinder cross-platform portability [30]. NISQ limitations significantly

impact resource utilization through constrained quantum volume, gate error accu-

mulation, and decoherence effects that limit algorithm complexity and execution

time [15]. Dynamic resource characteristics introduce additional scheduling com-

plexity as gate fidelities vary temporally, recalibration schedules affect availability,
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and hardware downtimes require adaptive resource allocation decisions [25, 31].

• Environment Dynamics and Orchestration Priorities: Time-aware orchestration be-

comes critical due to quantum coherence constraints that necessitate real-time schedul-

ing and sophisticated queue management for time-sensitive quantum operations.

Fidelity-aware placement requires intelligent circuit-hardware matching based on

gate error rates, connectivity graphs, and error correlation patterns to optimize

computation quality. Multi-objective optimization presents complex challenges in

balancing execution time, cost, and fidelity across heterogeneous quantum com-

puting environments. Dynamic adaptation capabilities are essential for real-time

adjustment to hardware performance fluctuations, queue dynamics, and failure

recovery scenarios that characterize operational quantum cloud environments.

• Resource Management Modeling, Simulation, and Evaluation Challenges: Scalability

limitations arise from classical simulation bottlenecks that restrict quantum sys-

tem modeling beyond small scales, necessitating alternative evaluation method-

ologies. Realistic noise modeling requires an accurate representation of hardware-

specific error models and temporal variations of the quantum computing environ-

ments that significantly impact quantum application performance. Benchmarking

complexities emerge from the need for standardized metrics enabling quantum

cloud service evaluation and performance comparison across diverse platforms

and hardware technologies [32]. Resource estimation challenges involve predict-

ing quantum resource requirements, including gate counts, circuit depth, and tran-

spilation of quantum circuits before execution.

In this thesis, we address the critical challenges of deployment and execution of

quantum applications in a resource-constrained, heterogeneous cloud-based quantum

computing environment by developing software system frameworks and techniques for

optimizing the overall resource management and task placement. Here, we systemat-

ically study the literature of cloud-based quantum computing, recent advances, open

problems, and future directions. Then, we develop a serverless framework for quantum

application deployment in practical hybrid quantum-classical environments. Further-

more, we propose the modeling and simulation approaches for quantum resource man-
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agement evaluation. Afterward, we propose different quantum task placement tech-

niques using deep reinforcement learning to optimize the time and fidelity of the quan-

tum task execution. These collective studies contributed to the fundamentals of software

systems and resource management research in quantum computing environments.

1.2 Research Questions and Objectives

The fundamental challenges in cloud-based quantum computing resource management,

as outlined in the previous section, necessitate adaptive and efficient approaches that

address the unique constraints and dynamics inherent in quantum systems. The objec-

tive of this thesis is to improve the overall performance of quantum applications and

resource management in cloud-based environments, focusing in optimizing time and

fidelity of the quantum execution by utilizing the state-of-the-art serverless models and

deep reinforcement learning techniques. To achieve these objectives, this thesis inves-

tigates four interconnected research questions (RQ) that span the quantum application

workflow, from application deployment to performance optimization, each addressing

critical gaps in cloud-based quantum computing paradigms:

• RQ1. How can the serverless computing model facilitate quantum software development

and resource orchestration in cloud-based quantum computing environments?

This research question addresses the critical challenge of quantum software com-

plexity and infrastructure management barriers that impede widespread quantum

application development. Traditional quantum computing deployments require

extensive configurations and complex infrastructure management, creating signif-

icant barriers for quantum software developers [28]. The serverless computing

paradigm, which has demonstrated success in classical cloud environments by

abstracting infrastructure complexity and enabling scalable, event-driven execu-

tion models, presents a promising approach for quantum application development

[33]. This research question investigates whether the serverless model can effec-

tively abstract quantum resource management complexity while maintaining the

performance and flexibility required for practical quantum applications. Key chal-
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lenges include adapting classical serverless principles to quantum-specific con-

straints such as circuit compilation requirements, application deployment, soft-

ware and hardware heterogeneity across different quantum computation backends

and cloud providers. The investigation encompasses the development of quantum

function-as-a-service models that enable seamless integration of quantum compu-

tation within hybrid classical-quantum workflows, automated quantum backend

selection mechanisms, and DevOps-driven deployment strategies for quantum ap-

plications. The research addresses practical considerations, including cold start

mitigation for quantum functions and multi-cloud orchestration capabilities that

can mitigate vendor lock-in issues. Furthermore, it explores how serverless archi-

tectures can facilitate the integration of quantum computing with existing software

systems, and facilitate the quantum computing adoption without extensive infras-

tructure redesign.

• RQ2. How can we design efficient and extensible modeling and simulation frameworks to

evaluate resource management strategies in quantum computing environments?

The second research question addresses the critical shortage of comprehensive

modeling and simulation tools specifically designed for quantum cloud comput-

ing environments. While classical cloud computing has benefited from mature

simulation frameworks such as CloudSim [34], iFogSim [35], and EdgeSimPy [36],

quantum computing lacks equivalent tools that capture the unique characteristics

of quantum resources and hybrid quantum-classical workflows. This limitation

significantly hinders research and development in quantum resource management

that needs to be conducted at a large scale, as practical experimentation with phys-

ical quantum hardware is prohibitively expensive and limited in availability.

This research investigates the design principles and implementation strategies for

quantum computing environment simulators that support comprehensive resource

management evaluation. The investigation encompasses system modeling ap-

proaches that accurately represent quantum processing units, quantum tasks, and

their interactions within the cloud-edge continuum. Key challenges include de-

veloping lightweight discrete-event simulation architectures that can scale to large
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quantum cloud deployments while maintaining accuracy in quantum-specific met-

rics such as quantum volume [29], Circuit Layer Operations Per Second (CLOPS)

[32], and fidelity degradation patterns. The proposed framework design empha-

sizes extensibility to accommodate emerging quantum technologies and metrics,

ensuring relevance as quantum hardware continues to evolve. Practical considera-

tions include dataset integration capabilities for real quantum circuit benchmarks,

support for hybrid quantum-classical task orchestration scenarios, and compati-

bility with machine learning-based resource management algorithms.

• RQ3. How can deep reinforcement learning be used to develop time-aware resource man-

agement techniques for cloud-based quantum computing environments?

The third research question addresses the inadequacy of traditional heuristic ap-

proaches for quantum task scheduling in dynamic, heterogeneous quantum cloud

environments. Classical resource management techniques, including greedy algo-

rithms, round-robin scheduling, and static priority-based approaches, fail to adapt

effectively to the temporal variations in quantum device performance, queue dy-

namics, and task arrival patterns that characterize operational quantum cloud en-

vironments [31]. The stochastic nature of quantum computations and the critical-

ity of execution timing due to decoherence constraints necessitate adaptive task

placement strategies that can learn from environmental dynamics. This research

investigates the application of deep reinforcement learning techniques to quantum

task placement and scheduling problems, specifically focusing on temporal opti-

mization objectives. The investigation encompasses the formulation of quantum

task placement as Markov Decision Processes that capture the sequential nature of

scheduling decisions under uncertainty.

Key challenges include designing state representations that effectively encode quan-

tum task characteristics, device capabilities, and temporal queue states, while main-

taining computational tractability for real-time decision making. The research ex-

plores reward function design strategies that balance optimization objectives, in-

cluding task completion time and scheduling fairness across heterogeneous quan-

tum devices. Time-awareness is incorporated through explicit modeling of queue
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waiting times, device availability schedules, and deadline constraints that reflect

the temporal sensitivity of quantum applications. The investigation addresses

the scalability challenges of applying deep reinforcement learning to quantum

cloud environments with varying numbers of quantum processors and diverse

task workloads. Practical considerations include training efficiency optimization

to enable deployment in operational quantum cloud systems, exploration strate-

gies that balance performance with learning efficiency in expensive quantum en-

vironments. The research also investigates the integration of domain knowledge

about quantum computing constraints into the learning process to accelerate con-

vergence and improve scheduling decisions

• RQ4. Can deep reinforcement learning effectively balance execution fidelity and time in

quantum task orchestration that adapts to the constraints of current NISQ systems?

The fourth research question addresses the fundamental trade-off between com-

putational fidelity and execution time that defines practical quantum computing

in the current NISQ era [15]. Unlike classical computing, where performance is

primarily constrained by computational resources and time, quantum comput-

ing introduces fidelity as a critical quality metric that directly impacts algorith-

mic success probability. Poor fidelity can render quantum computations meaning-

less regardless of execution speed, while overly conservative fidelity optimization

can result in long execution times. This research investigates whether deep rein-

forcement learning can effectively navigate the complex fidelity-time optimization

landscape in heterogeneous quantum cloud environments. The investigation en-

compasses the development of comprehensive performance models that integrate

device calibration data, circuit transpilation effects, and noise-aware fidelity esti-

mation to support adaptive orchestration decisions. Key challenges include de-

signing multi-objective optimization frameworks which the main focus on high-

fidelity computation priorities.

The research explores the modeling of quantum task execution fidelity through

realistic noise characterization based on actual quantum device calibration data,

including gate error rates, coherence times, and connectivity constraints. This ap-
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proach enables accurate prediction of execution quality across different device-

circuit combinations, supporting informed scheduling decisions that optimize for

overall performance rather than individual metrics. The investigation addresses

the dynamic nature of quantum device characteristics, including temporal varia-

tions in error rates and calibration cycles that affect optimal scheduling decisions.

Practical considerations include configurable optimization objectives that enable

adaptation to different application requirements, noise-aware transpilation effects

that capture the impact of circuit mapping on execution fidelity, and real-time

adaptation to device performance. The research also investigates the implications

of fidelity-time trade-offs, which is essential for efficient resource management in

cloud-based quantum computing environments.

1.3 Thesis Contributions

This thesis makes the following contributions to address the research problems men-

tioned above:

1. Proposes a comprehensive review and systematic mapping study of quantum cloud

computing paradigms, identifies research gaps in quantum resource management,

open problems, and future directions (addresses the research foundation).

• Comprehensive literature analysis of quantum cloud computing state-of-the-

art, covering cloud computing models, platforms, applications, resource man-

agement, and security aspects.

• Systematic taxonomy of quantum cloud computing research domains through

structured mapping and classification of primary studies.

• Future research directions establishment for quantum cloud computing ad-

vancement, including technical challenges and open problems.

2. Develops a holistic serverless quantum computing framework that enables seam-

less integration of quantum computation within established classical systems while

avoiding vendor lock-in problems (addresses RQ1).
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• A Quantum Function-as-a-Service (QFaaS) architecture with six extensible

system layers supporting multiple quantum SDKs (Qiskit, Cirq, Q#, and Braket)

and cloud providers (IBM Quantum and Amazon Braket).

• Adaptive priority-based backend selection policy that automatically deter-

mines the most appropriate quantum computation system for executing quan-

tum functions based on task requirements and system capabilities.

• Cold start mitigation strategy through transpilation caching and container-

ized deployment to reduce quantum function invocation latency.

• DevOps integration for quantum software development, including Continu-

ous Integration / Continuous Deployment (CI/CD) pipelines, and container-

based orchestration.

• Hybrid quantum-classical workflow orchestration enabling seamless integra-

tion of quantum functions within existing classical application workflows.

• Industry adoption with practical deployment demonstrated through the pro-

posed quantum serverless platform implementation based on QFaaS frame-

work architecture [37].

3. Design and develop a comprehensive modeling and discrete-event simulation frame-

work for quantum computing environments that enables systematic evaluation of

resource management strategies (addresses RQ2).

• Comprehensive system model for quantum computing environments using

key metrics of available quantum computers and quantum task execution,

serving as a theoretical foundation for quantum resource management.

• Discrete-event simulation architecture based on CloudSim [34] supporting

quantum cloud-edge continuum modeling.

• Multi-use case support for quantum resource management problems, includ-

ing task scheduling, backend selection, hybrid task orchestration, and task

offloading between edge and cloud layers.

• Real dataset integration capabilities accommodating IBM Quantum calibra-

tion data and MQT Bench quantum circuit datasets for realistic performance
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evaluation.

• Open-source contributions of the proposed work, including iQuantum and

QSimPy (the Python extended version of iQuantum), providing toolkits for

the research community advancement in quantum cloud computing resource

management.

4. Proposes a novel deep reinforcement learning-based approach for time-aware quan-

tum task placement that adapts to dynamic quantum cloud environments and op-

timizes task completion efficiency (addresses RQ3).

• Deep Q-Network (DQN) framework enhanced with Rainbow DQN, combin-

ing advantages of Double DQN, Prioritized Replay, Multi-step Learning, Dis-

tributional RL, and Noisy Nets for robust quantum task placement.

• Markov Decision Process formulation for quantum task scheduling with com-

prehensive state representation including quantum node features and task

characteristics.

• Adaptive reward function design balancing task completion time minimiza-

tion and rescheduling attempt reduction through penalty factors and inverse

completion time rewards.

• Significant time-aware performance improvements and scalable training method-

ology using the Ray RLlib framework with hyperparameter optimization and

evaluation on realistic quantum workloads from MQTBench datasets.

5. Develops a fidelity-aware quantum task orchestration framework using deep rein-

forcement learning that effectively balances execution fidelity and time constraints

in NISQ-era quantum systems (addresses RQ4).

• Noise-aware performance modeling integrating IBM quantum processor cal-

ibration data with circuit transpilation effects for accurate fidelity and execu-

tion time estimation.

• Proximal Policy Optimization (PPO) approach for learning adaptive orches-

tration policies that balance quantum execution fidelity and time across het-

erogeneous quantum cloud environments.
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• Configurable fidelity-aware optimization framework enabling adaptation to

different operational priorities through adjustable time penalty weights for

fidelity-time trade-off balancing.

• Comprehensive fidelity performance metrics incorporating base execution fi-

delity, relative performance scoring, and circuit complexity factors for holistic

quantum task quality assessment.

• Thorough performance evaluation using IBM Quantum calibration data and

MQT Bench quantum circuit datasets across different evaluation scenarios

and workload configurations.

• Substantial fidelity improvements in relative fidelity performance compared

to conventional scheduling baselines while maintaining comparable quan-

tum execution times.

1.4 Thesis Organization

The structure of this thesis is shown in Figure 1.3. The remaining chapters of this thesis

are organized as follows:

• Chapter 2 presents a comprehensive review and systematic taxonomy mapping

of quantum cloud computing paradigms, covering state-of-the-art developments,

research challenges, and future directions. This chapter provides the foundational

background for quantum cloud computing research and identifies critical gaps in

resource management that motivate the subsequent technical contributions. This

chapter is derived from:

Hoa T. Nguyen, Prabhakar Krishnan, Dilip Krishnaswamy, Muhammad Usman,

and Rajkumar Buyya, ”Quantum Cloud Computing: A Review, Open Problems,

and Future Directions”, submitted to ACM Computing Surveys (CSUR), April 2024

(Revision).

• Chapter 3 presents QFaaS, a holistic serverless function-as-a-service framework for

quantum computing that enables seamless integration of quantum computation



1.4 Thesis Organization 15

Figure 1.3: Overview of the thesis structure
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within established classical systems while avoiding vendor lock-in problems. The

chapter introduces quantum functions, adaptive backend selection policies, and

DevOps integration for quantum software development. This chapter is derived

from:

Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “QFaaS: A Server-

less Function-as-a-Service Framework for Quantum Computing”, Future Genera-

tion Computer Systems (FGCS), Volume 154, Pages: 281-300, ISSN: 0167-739X, Else-

vier Press, Amsterdam, The Netherlands, May 2024

• Chapter 4 presents iQuantum, a comprehensive modeling and simulation frame-

work for quantum computing environments that enables systematic evaluation of

resource management strategies without requiring expensive access to physical

quantum hardware. The chapter details the discrete-event simulation architec-

ture, system models for quantum entities, and validation using realistic quantum

datasets. This chapter is derived from:

Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “iQuantum: A toolkit

for modeling and simulation of quantum computing environments”, Software: Prac-

tice and Experience (SPE), Volume 54, Issue 6, Pages: 1141-1171, ISSN: 0038-0644,

Wiley Press, New York, USA, June 2024.

• Chapter 5 presents DRLQ, a novel deep reinforcement learning-based framework

and technique for time-aware quantum task placement in cloud computing envi-

ronments. The chapter formulates quantum task scheduling as a Markov Decision

Process and employs enhanced Deep Q-Networks with Rainbow DQN to optimize

task completion efficiency and minimize rescheduling attempts. This chapter is

derived from:

Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “DRLQ: A Deep Rein-

forcement Learning-based Task Placement for Quantum Cloud Computing”, Pro-

ceedings of the 17th IEEE International Conference on Cloud Computing (CLOUD

2024), Shenzhen, China, July 7-13, 2024

• Chapter 6 presents QFOR, a fidelity-aware quantum task orchestration framework
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using deep reinforcement learning that effectively balances execution fidelity and

time constraints in NISQ-era quantum systems. The chapter introduces noise-

aware performance modeling, configurable fidelity-aware optimization, and Prox-

imal Policy Optimization for adaptive quantum resource allocation. This chapter

is derived from:

Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, ”QFOR: A Fidelity-

aware Orchestrator for Quantum Computing Environments using Deep Reinforce-

ment Learning”, submitted to the ACM Transactions on Quantum Computing (TQC),

August 2025 (Under Review)

• Chapter 7 presents the conclusions of this thesis, summarizes the key contribu-

tions, discusses the implications of the research findings, and outlines future re-

search directions for advancing cloud-based quantum computing.





Chapter 2

A Review and Taxonomy on
Cloud-based Quantum Computing

Cloud-based Quantum Computing, or Quantum Cloud Computing, is an emerging paradigm

of computing that empowers quantum applications and their deployment on quantum computing

resources without the need for a specialized environment to host and operate physical quantum com-

puters. This chapter provides a systematic review and taxonomy of recent advances in quantum cloud

computing. It discusses the state-of-the-art quantum cloud advances, including the various cloud-

based models, platforms, and recently developed technologies and software use cases. Furthermore,

it discusses different aspects of the quantum cloud, including quantum serverless, hybrid quantum-

classical computing, resource management, quantum cloud security, and privacy problems. Our

findings offer valuable insights and practical lessons learned from the literature for researchers and

practitioners to better understand the current landscape of quantum cloud computing and set the

foundations for the remaining chapters of this thesis.

2.1 Introduction

Quantum computing is anticipated to revolutionize many scientific fields by promising

to solve intractable computational problems beyond the capabilities of the state-of-the-

art classical computers. Although quantum computers are still in the early stages of

development, they have already been used to address critical problems, such as simu-

lating the behaviour of molecules [38, 39] and discovering new drugs [40–42]. However,

This chapter is derived from:

• Hoa T. Nguyen, Prabhakar Krishnan, Dilip Krishnaswamy, Muhammad Usman, and Rajkumar
Buyya, ”Quantum Cloud Computing: A Review, Open Problems, and Future Directions”, submitted
to ACM Computing Surveys (CSUR), April 2024 (Second Revision).
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acquiring a dedicated physical quantum computer and hosting it is challenging as they

require an extremely special environment to host and operate, such as extremely cold

temperatures and complicated controlling [43]. Due to the complexity of operating a

physical quantum computer, hosting them within cloud computing environments is the

most common, as they provide easy access to today’s quantum computation resources.

Thus, quantum machines are placed in a remote data center with particular environmen-

tal conditions. These devices can interact with end-users via the vendor cloud platform,

which allows for the execution of quantum circuits and the retrieval of the computa-

tion result. Engineers and researchers, therefore, have more convenient ways to access

and utilize quantum devices remotely from their local computers. This model shortens

the pathway to achieving quantum advantages in the current era of noisy intermediate-

scale quantum (NISQ) hardware. NISQ devices, characterized by their tens to hundreds

of qubit scale, operate with a significant level of noise and limited qubit coherence times,

which presents unique challenges for quantum computation [15]. Despite these limita-

tions, NISQ technology offers a promising platform for exploring quantum algorithms

and applications prior to the advent of fault-tolerant quantum computing.

The emerging field of quantum cloud computing (QCC) combines the principles of

quantum computing with cloud infrastructure, enabling remote access to quantum com-

puters. This integration promises to significantly lower the barrier to utilizing quantum

computing resources, making it feasible for researchers and developers to explore quan-

tum algorithms without the need for possession of quantum hardware, facilitating a

wide range of cloud-based applications, such as quantum random number generation

[44–46] and quantum machine learning [47–50]. As interest in QCC grows, the field

has expanded with research focused on novel cloud-based quantum computation mod-

els, hybrid architectures, frameworks and platforms, resource management policies, and

enhanced privacy and security mechanisms. Given these rapid advancements, a com-

prehensive review of the field is essential to provide clarity and structure, especially for

practitioners and researchers seeking to understand the current landscape and identify

new opportunities in quantum cloud computing. Despite the growing body of QCC lit-

erature, existing review studies [51–53], however, are often superficial, lacking detailed

analysis of recent technological advancements and emerging service models in quantum
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cloud computing (discussed in Section 2.2). The interdisciplinary nature of QCC de-

mands a survey that can systematically map the state-of-the-art, covering foundational

concepts, service models, practical implementations, resource management, and secu-

rity to fully capture its scope and potential. This gap highlights the critical need for a

systematic and thorough review to encapsulate the latest developments, open problems,

and future directions in QCC. To address these gaps, our work systematically examines

QCC through the perspective of corresponding concepts and problems in classical cloud

computing, using a rigorous systematic mapping method to provide a valuable resource

for researchers in both quantum computing and cloud computing domains.

As one of the first literature mapping studies on quantum cloud computing, the

major contributions and novelty of our review are:

• We conduct a rigorous review of the quantum cloud computing literature, map-

ping recent studies and emerging models such as hybrid quantum-classical com-

puting and quantum serverless architectures. Additionally, we provide an overview

of leading quantum cloud providers and their contributions to advancements in

the field.

• We provide a comprehensive overview of the state-of-the-art in quantum cloud

computing, including technologies, frameworks, platforms, and applications that

have been developed for quantum cloud computing. Our survey presents vari-

ous applications of quantum cloud computing in different fields, such as machine

learning and cryptography.

• We review recent advances in quantum cloud computing in emerging aspects, in-

cluding service models, resource management and orchestration, and enhanced

security mechanisms specific to quantum cloud environments.

• We identify key challenges and open problems that need to be addressed based on

the systematic mapping study and propose future research directions to realise the

full potential of quantum cloud computing (discussed in Chapter 7).

The rest of this chapter is organized as follows: Section 2.2 discusses related work

to our work. Section 2.3 covers the foundational concepts of quantum computing and
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cloud computing to accommodate the diversity of readers’ backgrounds. Section 2.4

presents the research methodology and review protocol in detail. In Section 2.5, we

comprehensively provide the review results of recent advances in quantum cloud com-

puting. This section is divided into several sub-sections, focusing on different aspects

of quantum cloud computing based on the literature classification step in our review

protocol. In Section 2.6, we discuss the limitations and threats to validity of our review.

Finally, we conclude and summarize the chapter in Section 2.7.

2.2 Related Work

Several recent review articles have addressed various aspects of quantum computing,

but few have systematically focused on quantum cloud computing (QCC). To compre-

hensively assess their rigour, we classified their review methodologies and critically

analysed each study using the Database of Abstracts of Reviews of Effects (DARE) cri-

teria [54] as suggested by well-known review guidelines by Kitchenham et al. [55, 56].

These criteria include (Q1) inclusion/exclusion criteria reported, (Q2) topic coverage

and comprehensiveness of the literature review, (Q3) systematic quality assessment of

included studies, and (Q4) adequacy in describing basic data/studies. In Q2 criteria,

we evaluated each paper based on topic coverage of key QCC aspects, including funda-

mental concepts, models, use cases, frameworks and platforms, resource management,

security and privacy, open problems and future directions, as summarised in Table 2.1.

The existing literature on quantum cloud computing remains limited in scope, of-

ten lacking a comprehensive analysis of recent advancements in various aspects of the

field. Several early surveys, such as those by Kaiiali et al. [51], Leymann et al. [53],

and Soeparno et al. [52], adopt narrative approaches without formal protocols, resulting

in fragmented coverage across fundamental concepts, frameworks, or emerging QCC

models like serverless quantum computing. Kaiiali et al. [51] primarily focused on the

security implications and high-level impacts of quantum computing on cloud comput-

ing but lacked a detailed analysis of the latest advancements, such as computation mod-

els and resource management in quantum clouds. Leymann et al. [53] reviewed some

application potentials and opportunities of quantum computing on the cloud, focusing
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Table 2.1: Summary of related review articles on quantum cloud computing

Refs Year Mtd Q1
Q2

Q3 Q4
C M UC FP RM SP FD

Kaiiali et al. [51] 2019 NA ✗ PD PD ✗ PD
Leymann et al. [53] 2020 NA ✗ PD PD PD PD ✗ PD
Soeparno et al. [52] 2020 NA ✗ PD PD ✗ ✗

Gill et al. [57] 2021 SR ✗ PD PD PD ✗ ✓

Saki et al. [43] 2021 NA ✗ PD PD ✗ PD
Serrano et al. [58] 2022 NA ✗ PD PD ✓ ✓

Khan et al. [59] 2023 SR ✓ PD PD ✓ ✓

Yang et al. [60] 2023 NA ✗ PD PD ✓ ✓

Brotherton et al. [61] 2023 NA ✗ PD PD PD ✗ PD
Golec et al. [62] 2024 NA ✗ PD PD PD PD ✗ PD
Ours 2024 SR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes. Mtd=Method; NA=Narrative Analysis; SR=Systematic Review; C=Concepts; M=Models; UC=Use
cases; FP=Frameworks and Platforms; RM=Resource Management; SP=Security and Privacy; FD=Open
Problems and Future Directions; PD=Partially Described.

on software tools and platforms for collaborating to develop quantum applications, but

similarly fell short in addressing the complexities of quantum cloud frameworks and

resource management. Soeparno et al. [52] provided insights based on practical experi-

ences with IBM Quantum services, offering a general introduction to the available cloud

platforms. While informative, this article remains surface-level and lacks a structured

discussion on recent advancements or open challenges in quantum cloud computing.

Other broader surveys, such as those of Gill et al. [57] and Khan et al. [59], of-

fer broader taxonomies and overviews of quantum computing technologies, briefly ac-

knowledging cloud-based quantum services but without analysis into specific aspects

of quantum cloud computing. These reviews do not discuss quantum-specific resource

management or security frameworks and key components for deploying quantum ser-

vices in cloud environments. Yang et al. [60] and Caleffi et al. [63] contributed by ad-

dressing quantum communication and networking, which are essential for distributed

quantum systems. However, their focus diverges from core aspects of quantum cloud

computing, such as platform-specific challenges and serverless quantum computing

models, which are uniquely covered in our survey. Similarly, Brotherton and Gupta

[61] provide a broad survey that focuses exclusively on the security aspects of quantum

computing in the cloud, without covering other aspects of quantum cloud computing

environments. In a recent review, Golec et al. [62] provided a high-level overview of
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the quantum cloud computing concepts, identifying general trends, basic applications,

and potential challenges. While acknowledging the paradigms, this review does not

provide systematic thematic mapping on critical aspects of QCC such as models, frame-

works and resource management.

These limited scopes in existing studies leave significant gaps in understanding the

fundamentals, technical advancements, and open challenges in quantum cloud comput-

ing, which our study seeks to address comprehensively. Our study distinguishes itself

by providing a structured, in-depth review of various facets of quantum cloud comput-

ing that remain underexplored in existing literature. Following the rigorous review pro-

tocol by Kitchenham et al. [55], we ensure a transparent and systematic review process,

with clear inclusion/exclusion criteria, exhaustive literature search, quality assessment,

and detailed descriptions of each primary study. We provide full-spectrum coverage of

key areas QCC topics, including computation models, use cases, frameworks and plat-

forms, privacy and security, and critically analyse open problems and future directions.

This methodological rigour enables us to synthesise valuable insights and uncover un-

derexplored research challenges that remain unaddressed in prior literature. Broader

aspects, such as quantum communication channels, network infrastructure, architec-

tural layers (e.g., hypervisor, virtual machines), quantum hardware and quantum solu-

tions for classical cloud, are beyond the scope of this study and are covered in dedicated

works on quantum networking and distributed quantum computing, such as [60, 63, 64].

By concentrating on these targeted areas, our survey provides a foundation resource for

researchers and practitioners in this emerging domain to further explore and develop

systematic reviews on specific aspects of quantum cloud computing.

2.3 A Synopsis of Quantum Computing and Cloud Computing

This section provides a brief overview of quantum computing and cloud computing to

take into account the diverse backgrounds of readers.
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2.3.1 Quantum Computing

Quantum computing is an emerging paradigm that utilizes quantum-mechanical phe-

nomena, such as superposition and entanglement, to perform operations on data. It

has the potential to solve certain problems such as optimization [4, 65, 66], financial

modelling [11, 67], molecule simulation [38, 39], and machine learning [47–50, 68] much

faster than classical computers. The subsequent discussion focuses on the cornerstone of

quantum computing: the quantum bit, computation models, and quantum algorithms.

Quantum bits (Qubits)

A quantum bit (or qubit) is the basic unit of quantum information. Different from clas-

sical bits, which can exist in one of two states (0 or 1), qubits are characterized by their

ability to exist in a superposition state, i.e., they can be in a combination of both states

0 and 1 simultaneously. This property enables the representation and processing of a

richer set of information possibilities compared to classical bits. Another key charac-

teristic of qubits is entanglement, a quantum phenomenon where the state of one qubit

becomes inextricably linked to the state of another, regardless of the distance between

them. This linkage means the properties of entangled qubits cannot be described inde-

pendently of each other [69]. These distinctive features of qubits could enable quantum

computers to execute certain computations more efficiently than classical computers,

potentially solving problems considered intractable for classical computation.

Quantum computation models

Two distinct quantum computing models are being concurrently developed: gate-based

computations and quantum annealing-based computations. Gate-based models, also

known as circuit-based models, use a set of quantum gates to perform operations on

qubits. These gates are used to manipulate the state of qubits and perform operations

on them. Table 2.2 briefly summarizes typical quantum gates’ characteristics. Gate-

based models are based on building a quantum circuit to realize a sequence of gates

that perform a specific computation. The action of quantum gates can be represented
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Table 2.2: A summary of common quantum gates and their mathematical representation

Quantum gates Description Mathematical Representation

Si
ng

le
-q

ub
it

Pauli-X A bit flip gate, which
acts as a rotation by π
around the X-axis of the
Bloch sphere

σX = X =

[
0 1

1 0

]
= |0⟩⟨1|+ |1⟩⟨0|

Pauli-Y A bit and phase flip
gate, which acts as a
rotation by π around
the Y-axis of the Bloch
sphere

σY = Y =

[
0 −i

i 0

]
= −i|0⟩⟨1| + i|1⟩⟨0| =

i.σX .σZ

Pauli-Z A phase flip gate, which
acts as a rotation by π
around the Z-axis of the
Bloch sphere

σZ = Z =

[
1 0

0 −1

]
= |0⟩⟨0| − |1⟩⟨1|

Hadamard
(H)

A gate to create a super-
position of |0⟩ and |1⟩

H = 1√
2

[
1 1

1 −1

]
= 1√

2
(|0⟩⟨0| + |0⟩⟨1| +

|1⟩⟨0| − |1⟩⟨1|)

Phase (Pϕ) A parametrized gate
performs a rotation of
ϕ around the Z-axis
direction

P(ϕ) =

[
1 0

0 eiϕ

]
where ϕ is a real number

Identity (I) A gate that have no ef-
fect on the qubit state

I =

[
1 0

0 1

]

S (or
√

Z) A P(ϕ) gate with ϕ =
π/2, apply a quarter-
turn around the Bloch
sphere

S =

[
1 0

0 i

]
=

[
1 0

0 e
iπ
2

]

T (or 4
√

Z) A P(ϕ) gate with ϕ =
π/4

T =

[
1 0

0 e
iπ
4

]

M
ul

ti
-q

ub
it

CNOT (or
CX)

A 2-qubit gate that flips
the target qubit when
the control qubit is in
the state |1⟩

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 = |00⟩⟨00| + |01⟩⟨01| +

|10⟩⟨11|+ |11⟩⟨10|

SWAP A 2-qubit gate that
swap (exchange) the
state of these two qubits

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


Toffoli (or
CCX)

A 3-qubit gate that flips
the third qubit if the
first two qubits are both
in state |1⟩

CCXq0, q1, q2 = I ⊗ I ⊗ |0⟩⟨0|+ CX⊗ |1⟩⟨1|
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as a unitary transform on qubits. If a sequence of gates G1, G2, . . . Gm are applied to a

set of input qubit state vector Q, then the resultant state is given by the corresponding

cascaded sequence of unitary transforms applied to the input vector Q given by the

matrix product Gm . . . G2G1Q. This approach allows for flexibility and can be used to

support a wide range of quantum algorithms, such as search and factorization problems.

Quantum annealing-based computations support an alternate paradigm of compu-

tation, and they are typically utilized to solve optimization problems. In this approach,

an energy function (also known as the Hamiltonian of the system) is used to represent

an optimization problem under consideration. For example, a QUBO (Quadratic Un-

constrained Binary Optimization) [65] formulation involves self-coupling weights wii

for qubit states xi and cross-coupling weight terms wij for pairwise products of qubit

state terms xixj to result in an energy function of the form H = ∑i wiixi + ∑ij wijxixj.

Many optimization problems can be reduced to such a form for the energy function that

is desired to be minimized. There are physical self-coupling and cross-coupling connec-

tions in an annealing-based quantum computer. In some simple cases, the optimization

problem can be directly mapped to the physical networked connections in the quantum

computer. In other cases where this is not feasible (for example, where the desired de-

gree of cross-coupled connectivity is higher than the physically available connectivity),

then the problem can be transformed (for example, by splitting a node with high vertex

connectivity into multiple nodes) such that the problem can be reduced to a form that

can be mapped to the physically available connectivity. The system is initialized to a

random or known initial state. Subsequently, the quantum system is allowed to evolve

until it settles down or anneals to a low-energy state as it attempts to minimize the en-

ergy function. The resultant low-energy state provides the solution to the problem. Due

to the likelihood of the system getting trapped in a local minimum, multiple runs of

the algorithm are attempted starting with different initial states, and the lowest energy

solution across different runs can be utilized as the solution to the problem.
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Quantum Algorithms

Quantum computation leverages unique quantum-mechanical properties, such as su-

perposition, entanglement, and interference, to process information encoded in quan-

tum bits (qubits). Unlike classical bits, which are binary, qubits can exist in the super-

position of multiple states, enabling quantum algorithms to perform certain computa-

tions more efficiently than their classical counterparts. One notable example is Shor’s

algorithm [2], which demonstrates a significant speedup in factorizing large integers

compared to classical approaches. This algorithm exploits quantum superposition and

entanglement to find the prime factors of an integer exponentially faster than the best-

known classical algorithms. The implications of Shor’s algorithm are profound, partic-

ularly in cryptography, as many current encryption methods, such as RSA, rely on the

high computational complexity of factorizing large numbers. The advent of quantum

computing thus poses a potential threat to these encryption systems. Another preva-

lent quantum algorithm is Grover’s algorithm [3], designed for searching unstructured

databases. Grover’s algorithm achieves a quadratic speedup over classical search algo-

rithms. In a database of N unstructured items, Grover’s algorithm can find the desired

item in roughly
√

N steps, compared to the N steps required classically. This speedup,

while less dramatic than that of Shor’s algorithm, is still significant and has implications

for a wide range of search-related problems.

In recent years, advancements in quantum algorithms have expanded beyond these

foundational concepts, embracing more complex and application-specific algorithms.

Among these, the Variational Quantum Eigensolver (VQE) and Quantum Approximate

Optimization Algorithm (QAOA) have gained prominence. The Variational Quantum

Eigensolver (VQE) [5] is a hybrid quantum-classical algorithm primarily used in quan-

tum chemistry for finding the ground state energy of molecules. VQE operates by

preparing a quantum state on a quantum computer and measuring its energy, while

a classical computer variably adjusts the quantum state to minimize its energy. This

approach leverages the quantum system for what it does best – representing complex

quantum states – and uses classical optimization techniques to navigate the solution

space efficiently. The Quantum Approximate Optimization Algorithm (QAOA) [4] is

designed for solving combinatorial optimization problems, like the Max-Cut problem.
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QAOA works by encoding the problem into a Hamiltonian and then applying a series

of quantum gates that approximate the problem’s solution. Its performance improves

with the number of quantum layers used, offering a promising approach for achieving

quantum advantage in optimization tasks. Quantum Machine Learning (QML) [68, 70]

represents another emerging field. QML algorithms leverage quantum computing for

machine learning tasks, potentially offering speedups in data processing and pattern

recognition. Quantum machine learning is particularly compelling because it merges

two cutting-edge fields, quantum computing and artificial intelligence, potentially lead-

ing to breakthroughs in both domains.

While these recent quantum algorithms show great promise, they are still in the de-

velopmental stage and face implementation challenges. They often require a significant

number of qubits and sophisticated error correction methods to be practically viable.

Unlike classical computing, where errors are managed through straightforward bit-flip

corrections, quantum computing’s fault tolerance is more complex, addressing both bit-

flip and phase-flip errors without direct measurement to avoid collapsing the quantum

state [71]. These unique challenges in fault tolerance highlight the need for advanced

quantum error correction codes to achieve reliable, large-scale quantum computation.

However, as quantum technology continues to advance, these algorithms are likely to

play a pivotal role in realizing the practical applications of quantum computing.

2.3.2 Cloud Computing

Cloud computing has revolutionized how software and IT infrastructure capabilities

are made available as subscription-oriented computing utilities on a pay-as-you-go ba-

sis to consumers over the Internet. This paradigm has brought numerous benefits to

society, enabling enterprises to expand globally faster and supporting scientific research

advancement [72]. In this section, we briefly discuss their computing models along with

the recent emergence of the serverless computing model.

Cloud computing models

There are several service models and deployment models in cloud computing:
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1. Service models: Cloud computing can be delivered through three main service

models, including Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS) [73]. IaaS provides users access to physical in-

frastructures like servers, networking, and data storage. IaaS enables users to out-

source the infrastructure maintenance and management to a cloud provider and

flexibly adjust the resources as needed. PaaS abstracts away the infrastructure

and allows developers to think about creating applications on top of a platform

that provides different services, such as authentication, database storage, load-

balancing, auto-scaling, etc., to provide an environment that enables ease of de-

velopment. SaaS enables applications to be hosted on a cloud to directly provide

services to a user, with the platform and infrastructure aspects abstracted away

from the user of the service.

2. Deployment models: Cloud computing can be deployed in different manners,

including public clouds, private clouds, and hybrid clouds. For the public cloud,

services are provided over the public Internet and are available to anyone willing

to pay for them. This model offers scalability, flexibility, and efficiency. In terms

of private cloud, infrastructure is dedicated to a single organization, offering more

control and security. It can be hosted internally or externally. Hybrid clouds are

combinations of public and private clouds, allowing data and applications to be

shared between them. This model provides greater flexibility and optimization of

existing infrastructure.

From Serverful to Serverless computing model

The transition from traditional (or serverful) models to serverless models marks a signif-

icant shift in cloud computing. The serverful computing model requires users to manage

servers and computation resources, demanding setup, maintenance, and scaling, which

offers control but adds complexity [74]. Serverless computing, however, abstracts server

management, focusing developers on code rather than infrastructure. It dynamically

allocates resources, optimizing costs by charging only for actual usage, and automati-

cally scales to demand [75]. This shift simplifies operations, reduces costs, and allows
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for more efficient resource use, emphasizing development efficiency over infrastructure

management [76]. There are two common serverless paradigms:

1. Function-as-a-Service (FaaS): FaaS allows users to execute code in response to

specific events or triggers, typically through an application programming inter-

face (API). The cloud provider automatically allocates and sets up the underlying

infrastructure required to run the code [77]. Examples of FaaS-based commercial

platforms include Amazon Web Services (AWS) Lambda, Google Cloud Functions,

and Microsoft Azure Functions. Besides, there are numerous open-source FaaS

frameworks, such as OpenFaaS, OpenWhisk, and Knative.

2. Backend as a Service (BaaS) provides a set of pre-built backend services, such

as database management, user authentication, and push notifications, which de-

velopers can use to build and run their applications. Examples of popular BaaS

platforms include Firebase, AWS Mobile Hub, AWS Amplify, and Microsoft Azure

Mobile Apps.

Quantum and Post-Quantum Cryptography-based Techniques for Cloud Computing

Alongside the development of quantum cloud computing, significant research has fo-

cused on quantum-based and post-quantum cryptography (PQC) techniques to enhance

security and efficiency within classical cloud computing environments. Quantum-based

techniques leverage quantum algorithms to improve computational tasks for cloud com-

puting, such as resource management optimization [78] and cloud workload prediction

[79]. Additionally, PQC aims to secure cloud computing against potential quantum at-

tacks by developing cryptographic algorithms resistant to quantum decryption, ensur-

ing future-proof security for sensitive data [80]. PQC also intersects with QCC by se-

curing classical components of cloud infrastructure against quantum-enabled attacks.

Although these approaches are essential for advancing classical cloud security and effi-

ciency, they fall outside the primary scope of this review study and can be found with

further details in relevant studies, such as [81–83].
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2.4 Review Methodology

This section describes the rigorous multi-step review process applied in our study, fol-

lowing well-established guidelines for systematic mapping studies (SM) [55, 84, 85], and

other systematic mapping studies in quantum computing domain [86, 87]. The overall

review protocol is outlined in Figure 2.1.

Figure 2.1: Overview of our multi-step review protocol

2.4.1 Research Questions and Scope of the Review

The main objective of our systematic mapping study is to analyze the current state of

quantum cloud computing research and development comprehensively, covering both

established computing paradigms and emerging trends. Our goal is to classify key re-

search topics within the field and identify open challenges and future directions that

are relevant to quantum cloud computing as opposed to the broader area of quantum

computing. To achieve this, we carefully designed our research questions (RQs) to fo-

cus explicitly on quantum cloud computing based on an extensive search and review of

primary studies specifically within this domain:

1. Research Question 1 (RQ1): What is the state-of-the-art paradigm of quantum cloud

computing?
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2. Research Question 2 (RQ2): What research topics are currently being explored in quan-

tum cloud computing?

To ensure thoroughness, we divided this research question into two sub-questions:

(a) RQ2.1 Which key aspects of quantum cloud computing are being studied?

(b) RQ2.2 What are advances in each identified aspect of quantum cloud computing?

3. Research Question 3 (RQ3): What open problems and future research directions in

quantum cloud computing?

The response to this question is discussed in Chapter 7.

These research questions establish a structured and comprehensive scope for this re-

view, focusing on quantum cloud computing. Our study focuses explicitly on essen-

tial quantum cloud computing aspects, including cloud computing models, use cases,

frameworks, platforms, resource management, security and privacy to provide a com-

prehensive mapping, addressing both the current state and the potential future direc-

tions. Areas such as quantum networking, quantum hardware, quantum-inspired al-

gorithms, and post-quantum cryptography are explicitly excluded, as they belong to

distinct research domains. While related, their core challenges, such as entanglement

distribution in networking or device-level design in hardware, lie outside the cloud ab-

straction layer. Further review and analysis of those areas can be found in dedicated

surveys, such as [60, 83, 88]. This exclusion ensures a focused and methodologically

coherent review of the quantum cloud computing domain.

2.4.2 Review Protocol

Based on the defined research questions, we conducted an intensive sequential search-

ing and selection process comprising four main steps labelled from (2) to (5) as shown in

Figure 2.1. This structured approach is intended to minimize selection bias and ensure

comprehensive coverage of the relevant literature.
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Database Search

In Step 2, we performed a formal search across five major electronic databases: ACM

Digital Library1, IEEE Xplore2, DBLP3, Scopus4, and Web of Science5, following Kitchen-

ham et al. [55] and other relevant quantum review studies [86, 87]. We excluded ArXiv

to limit the inclusion of non-peer-reviewed studies, hence mitigating the introduction

of selection bias in unpublished works. The following search string was used to ensure

specificity to our topic: "quantum" AND "cloud" AND "computing". The search

string was applied uniformly across all databases, and search results were refined based

on the inclusion/exclusion criteria specified below.

Inclusion and Exclusion Criteria

To establish a rigorous selection process for relevant primary studies, we defined the

following inclusion (✓) and exclusion (✗) criteria:

✓ Peer-reviewed publications that directly cover quantum cloud computing.

✓ Publications written in English have been published and made available in the

databases between January 2017 and July 2024, covering the period after IBM’s

introduction of one of the first public cloud-accessible quantum systems in 2017

[86, 89]. Therefore, most relevant research starting in 2017 will primarily use these

available cloud-based quantum resources.

✓ Technical reports and publicly available information from quantum cloud ven-

dors’ websites on the current development of quantum cloud computing services.

✓ Publications accessible through open access or our institutional access.

✗ Publications that focus on unrelated topics, including the application of quantum

computing for classical cloud computing, quantum-inspired algorithms, and post-

quantum cryptography techniques.
1https://dl.acm.org/
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://dblp.org/
4https://www.scopus.com/
5https://www.webofscience.com
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✗ Publications that focus on other related aspects that overlap significantly with pre-

viously reviewed systematic literature on other quantum computing topics, such

as quantum communications, quantum networks, quantum hardware, and quan-

tum error mitigation techniques.

✗ Publications that were only available in the form of abstracts or presentation slides.

Figure 2.2: Results of our multistep review protocol for search, selection, and classifica-
tion of primary studies

Screening, Quality Assessment, and Snowballing

In Step 3, we screened the titles and abstracts of all retrieved studies, removing those

that did not meet the inclusion criteria and discarding duplicates. This initial screening

helped refine our dataset, ensuring that only studies relevant to the RQs were retained.

Step 4 involved an in-depth quality assessment (QA) of the remaining studies based on

our inclusion criteria. To ensure methodological rigour, we prioritized peer-reviewed

publications offering significant insights into quantum cloud computing. In cases where

multiple papers reported the same research, we retained only the most recent and com-

prehensive work. In Step 5, we employed Google Scholar6 for backward and forward

snowballing [85] on key studies to identify additional relevant literature that may have

6https://scholar.google.com
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been missed during the database search, similar to other systematic mapping studies

[87]. This choice was motivated by Google Scholar’s extensive and inclusive indexing

of scholarly literature to maximise the likelihood of identifying all relevant studies, in-

cluding potentially impactful works that may not be indexed in conventional databases.

This step was repeated iteratively with steps 3 and 4 until no new relevant articles were

found, ensuring comprehensive coverage and minimising the risk of missing relevant

literature.

Literature Classification

In this stage, we categorized the selected studies into a structured classification scheme

based on their primary focus areas within quantum cloud computing. This classifica-

tion was designed to align with our research questions and identify patterns within the

field. The final categories were iteratively developed and refined based on initial find-

ings to ensure that they reflected both the research questions and the current landscape

of quantum cloud computing. As shown in Figure 2.2, the main categories of the lit-

erature include Concepts and Overview, Computation Models, Applications and Use Cases,

Providers and Platforms, Resource Management, Security and Privacy. Each primary study

was assigned to one or more of these categories based on its primary focus, enabling a

systematic analysis in subsequent stages. Additional relevant studies were also included

as supporting references to enhance the contextual foundation of the review.

Data Extraction and Analysis

In the final step, we analysed, extracted and synthesized data systematically from the

classified studies to create a comprehensive systematic map and discussion in Section

2.5. This extraction included key details on study objectives, methodologies, findings,

and identified research gaps.
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2.5 Recent Advances in Quantum Cloud Computing

This section provides an overview of quantum cloud computing (QCC), addressing RQ1

by examining the state-of-the-art paradigms, foundational principles and concepts of

QCC in Section 2.5.1. Then, the rest of this section addressed RQ2 by reviewing current

research topics that are currently being explored in QCC and their recent advances.

2.5.1 Overview of Quantum Cloud Computing

Quantum Cloud Computing Paradigm

Quantum cloud computing represents an emerging computational paradigm that inte-

grates the principles of quantum computing with cloud computing, enabling quantum

computations to be executed on cloud-based quantum platforms [51, 53]. This model

allows for quantum computational resources to be either publicly accessible via the

Internet (public quantum cloud) or privately within a specific organization through a

secured network (private quantum cloud), thereby democratizing access to quantum

computing capabilities [90]. QCC allows users to perform quantum computing tasks

without investing in their own quantum hardware. As depicted in Figure 2.3, users

interact with these quantum computational resources through a cloud interface from

classical computers, utilizing APIs to access software as a service. This paradigm facili-

tates the decomposition of large-scale quantum applications into microservices [91] and

quantum functions (see Chapter 3), which can then be efficiently deployed and man-

aged on a cloud-based platform. The cloud platform comprises essential components

for orchestrating the quantum runtime and execution environment, resource allocation,

storage, and networking. Ultimately, the quantum workload is processed in quantum

computers and managed at remote data centers. A key innovation in QCC is the po-

tential integration with the Quantum Internet [92, 93] and Quantum Key Distribution

techniques [94]. This paradigm promises to revolutionize data communication by utiliz-

ing quantum principles for network communications, potentially eliminating the need

for classical intermediaries in quantum data exchange. However, the realization of a

mature Quantum Internet remains a future goal, with current challenges including the
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development of robust quantum communication protocols and the integration of quan-

tum and classical systems [92, 93]. Presently, the interconnection between cloud-based

quantum computers and users still predominantly relies on classical Internet and com-

puting technologies [95], leading to the emergence of hybrid quantum cloud computing

models [90]. These hybrid models combine quantum computational power with clas-

sical networking and data processing, offering a pragmatic step towards fully realizing

quantum cloud computing’s potential.

Figure 2.3: A high-level view of quantum cloud computing

Quantum cloud computing is still an emerging field; however, it is witnessing in-

creasing interest from both industry and academic entities focused on developing and

deploying these services. Singh et al. [96] highlighted the idea of quantum-cloud inte-

gration and implied this combination would be the potential approach of future quan-

tum computing. One of the first trials to bring quantum resources to the cloud was

conducted by the Center for Quantum Photonics (CQP) at the University of Bristol [97]

in early 2016. They introduced a two-qubit optical-based quantum computer, accessible

through the Internet for testing purposes, marking the initiation of quantum resources

into the cloud domain. Subsequent to this, industry giants such as IBM [89], Amazon

Web Services (AWS) [98], and Microsoft Azure [17] began to provide quantum com-

puting services to the public as part of their cloud services offerings. These initiatives
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underscored the viability and growing accessibility of quantum computing resources

via cloud platforms. Karalekas et al. [19] detailed the architecture of a typical quan-

tum cloud computing platform, specifying four essential components: 1) an apparatus

for accommodating physical qubits, 2) a control system for manipulating the appara-

tus, 3) an executor for orchestrating the control system, and 4) a compiler for compiling

quantum circuit for the executor. Faro et al. [20] introduced a concept for a hybrid quan-

tum cloud computing architecture that incorporates middleware designed to facilitate

the integration and management of quantum and classical computations. Furthermore,

several works have been proposed to enhance the error robustness of cloud-based quan-

tum computer interfaces. For example, Carvalho et al. [99] achieved substantial error

reduction in quantum logic operations using optimized pulses through a cloud quan-

tum computing interface, marking a pivotal advancement in enhancing the reliability

and performance of quantum computations. These developments collectively represent

the initial steps towards establishing a standardized approach for cloud-based quan-

tum infrastructure across academia and industry, aiming to realize the full potential

of quantum cloud computing. Due to the noisy intermediate-scale nature of available

quantum machines [15, 100, 101], high-performance quantum simulators also need to be

provided through the cloud to create the experiment environment for quantum-related

research. Most quantum cloud providers offer access to large-scale quantum simulators

for prototyping quantum applications. For example, IBM Quantum [89] offers access

to various simulators, including the statevector simulator (32 qubits), QASM simula-

tor (32 qubits), and the Clifford simulator, which supports up to 5,000 qubits for the

Clifford circuit. Similarly, Amazon Braket and Azure Quantum provide access to nu-

merous quantum simulators, such as state vector simulators, density matrix simulators,

and tensor network simulators 7. Additionally, Intel also offers a cloud-ready quantum

simulator [102] with high-performance capabilities for simulating up to 42-qubit quan-

tum circuits, supporting numerical studies, noise/error modeling, and parallel quantum

device emulation.

7https://docs.aws.amazon.com/braket/latest/developerguide/braket-devices.html
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Cost of Quantum Cloud Computing

Given the significant costs associated with cooling and manufacturing quantum com-

puters [103, 104], their usage costs can typically be higher than utilizing resources on a

classical computer. However, quantum computers can execute certain computationally

hard tasks significantly faster than classical computers. It is advantageous to execute

such tasks on a quantum computer in such cases where the overall cost to execute the

task is significantly lower than on a classical computer. Besides the execution cost, one

must consider latency constraints to access a quantum computer. Preparing a task for

submission to a quantum computer can incur additional latency as well. A quantum

computer’s resources are typically shared across different users, so additional consid-

erations, such as a job queuing latency or task compilation latency, would also need to

be considered. In general, one has to carefully consider different constraints, such as

the overall cost for execution and the overall latency to execute a task on a quantum

computer, before choosing a quantum computer over a classical computer to perform a

given task.

2.5.2 Quantum Cloud Computing Models

Table 2.3 maps studies that focus on various service and computation models within

the context of quantum cloud computing in the selected literature, including Quan-

tum Computing-as-a-Service (QCaaS), Quantum Serverless and Quantum Function-as-

a-Service, and Hybrid Quantum-Classical Computing.

Table 2.3: Mapping of Studies Considering Quantum Cloud Computing Models

Covered aspects of QCC Models Studies
Quantum Computing-as-a-Service (QCaaS) [105–107]
Quantum Serverless and Quantum Function-as-a-Service [91, 108, 109]
Hybrid Quantum-Classical Computing [20, 28, 110–113]
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Quantum Computing as a Service (QCaaS)

Quantum Computing as a Service (QCaaS), also referred to as Quantum as a Service

(QaaS), represents a general quantum cloud service model within the evolving quantum

cloud computing landscape. This model provides users with remote access to quantum

computing resources, facilitating the exploration and application of quantum computing

without the need to own and maintain quantum hardware. Stefano et al. [105] proposed

the concept of Quantum-Algorithms-as-a-Service (QAaaS) for hybrid quantum-classical

applications. QAaaS abstracts the quantum computing elements from the software de-

velopment process, enabling developers to focus more on application logic rather than

the intricacies of quantum computation. This abstraction is crucial for integrating quan-

tum computing into broader IT infrastructures and for making quantum resources more

accessible to a diverse range of users, including those with limited expertise in quantum

mechanics. Obst et al. [106] highlight the challenges practitioners face when navigating

these quantum-specific cloud service offerings, which vary significantly in capabilities

and requirements. As such, QCaaS is pivotal in democratizing access to quantum com-

puting resources on the cloud and accelerating the development of quantum applica-

tions across various industries [107].

Quantum Serverless

Serverless Quantum Computing is the emerging adoption of a serverless computing

model for empowering quantum computing, making it more usable and reliable by ab-

stracting the application deployment and infrastructure setup from users. Following this

paradigm, users only need to focus on developing quantum applications using cloud-

based services. The serverless applications are highly scalable and effectively utilize the

resources, therefore, optimizing the total cost with the pay-per-use model. The server-

less quantum computing model is well-suited to the hybrid quantum-classical applica-

tion deployment. In 2021, IBM proposed the proof of concept for Quantum Serverless

architecture, which allows the incorporation of quantum and classical tasks in a single

application. They have claimed that direction is the future of quantum programming

and have planned to introduce Quantum Serverless with intelligent orchestration, cir-
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cuit knitting toolbox, and circuit libraries by 2023 [114].

Cloud-native technologies such as containerization, Application Programming In-

terface (API) gateway, continuous integration, and continuous delivery can be adopted

to develop a quantum serverless platform. Garcia-Alonso et al. [108] proposed a proof

of concept for Quantum API Gateway (QAPI), which adapts API gateway for exposing

quantum services. They also demonstrated that a quantum service could not be de-

ployed permanently inside a quantum computer like its classical counterpart. Instead,

the quantum circuit needs to be compiled and sent to an appropriate quantum device

for execution at the run time. They also proposed an execution time forecasting model

to recommend the best quantum computer for each task and evaluated their proof-of-

concept on Amazon Braket service. Dreher et al. [109] proposed a simple container-

based prototype to encapsulate Qiskit codes into a Docker container on the local com-

puter and interact with the cloud-based IBM Quantum service. In [91], the authors

demonstrated their trials on deploying hybrid quantum microservices of the Travelling

Salesman Problem (TSP) to reveal the limitations of quantum service engineering. They

particularly deployed adiabatic and gate-based quantum implementations of TSP on the

Amazon Braket platform using IonQ, Rigetti, and D-Wave hardware. The evaluation

of this research showed many challenges of quantum service engineering with current

NISQ devices, including the limited number of qubits, error rates, response time, and

service costs. Focusing on the serverless integration aspect, we also proposed the con-

cept of Quantum Function-as-a-Service (QFaaS) in Chapter 3, which is one of the first

full-stack serverless function-as-a-service frameworks that support multiple quantum

SDKs and quantum computing services. The evaluation of QFaaS with practical use

cases on multiple quantum software kits and cloud vendors demonstrates the versatil-

ity and potential of bringing serverless techniques for accelerating quantum software

engineering.

Hybrid Quantum-Classical Computing

The current development of almost all quantum cloud computing platforms still de-

pends on classical architecture, generally referred to as the hybrid quantum-classical
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cloud (HQCC) [19]. The sample workflow in an HQCC system is illustrated in Figure

2.3. In this architecture, users submit their quantum circuits through web API to the

classical cloud services (such as IBM Cloud or Amazon Web Services). These circuits

are queued before being forwarded to a quantum processor for execution. Finally, the

results will be returned to the classical cloud and forwarded to the original user. All

popular quantum cloud providers, such as IBM Quantum, Amazon Braket, and Azure

Quantum, are employing this hybrid architecture for their quantum computing service.

HQCC utilizes classical and quantum computing resources in a cloud environment to

solve specific problems more efficiently by combining the strengths of both types of com-

puting. The aim is to improve the system’s performance by employing the unique capa-

bilities of quantum computing, like quantum parallelism and entanglement, along with

the power and flexibility of classical computing. Kumara et al. [110] propose Quantum

Service-Oriented Computing (QSOC), which uses a model-driven approach to integrate

quantum and classical components. Moguel et al. [28] emphasize the technical chal-

lenges of hybrid classical-quantum integration, using a case study on Amazon Braket to

illustrate limitations in developing quality quantum services, including issues of plat-

form independence and scalability in service-oriented quantum systems. Several stud-

ies, such as Britt et al. [111] and Maring et al. [113] also explore integration pathways for

quantum processing units (QPUs) within high-performance computing (HPC) systems,

identifying integration approaches based on infrastructure constraints and highlighting

the importance of quantum interconnects in enhancing QPU performance within hybrid

architectures. Faro et al. [20] proposed the middleware architecture for orchestrating

hybrid quantum-classical computing systems. This heterogeneous architecture high-

lights the benefits of combining the advantages of both quantum and classical comput-

ing to optimize cloud-based resource utilization. Pfandzelter et al. [112] also proposed

a Kernel-as-a-Service (KaaS) programming model to support heterogeneous workflows

involving classical and quantum computation tasks. This prototype shows promising

development of HQCC architecture design in the future.
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2.5.3 Quantum Cloud Applications and Use Cases

Quantum cloud computing is pivotal in the development and deployment of quantum

software. As quantum cloud computing is currently the only way to access quantum

computers outside developers, almost all empirical studies have been conducted using

quantum cloud resources. Table 2.4 provides the mapping of key studies to demonstrate

practical use cases of quantum software in the cloud environments.

Table 2.4: Mapping of studies on a subset of key use cases and applications of quantum
cloud computing

Category Studies
Quantum Random Number Generation (QRNG) [44–46]
Quantum Machine Learning (QML) [47–50, 115]
Chemical Simulation and Modeling [116–119]
Cybersecurity and Blockchain Applications [120–123]
Optimization Problems [124]

Quantum Random Number Generation (QRNG), an important application, has seen

diverse implementations. For example, Huang et al. [44] enhanced cloud cybersecu-

rity by integrating four types of quantum random number generators on Alibaba Cloud

servers, combining their outputs for robust random number generation in high-security

applications like Alipay. Li et al. [45] developed a quantum random number gener-

ator (QRNG) on IBM’s cloud-based quantum computers, addressing the challenge of

noise-induced randomness errors. Inspired by source-independent QRNG in optics,

their method estimates errors in superposition state preparation, ensuring randomness

even with readout errors, and optimizes parameters for increased random bit genera-

tion rate. Similarly, Kumar et al. [46] demonstrated a Quantum True Random Number

Generator (QTRNG) on IBM’s cloud-based quantum computing platform, showcasing

a practical application of cloud quantum computing in cryptographic operations.

Quantum Machine Learning (QML) has emerged as another impactful application

of quantum cloud computing, particularly in areas requiring vast data processing and

complex model training. In this context, Gomez et al. [47] developed an Automated

QML (AutoQML) framework in a classical-quantum hybrid cloud architecture, enabling

parallelized hyperparameter exploration and model training. They demonstrated train-
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ing a quantum Generative Adversarial neural Network (qGAN) for generating energy

prices, showcasing the potential of QML in the energy economics sector. Gong et al.

Similarly, [48] proposed a quantum k-means algorithm that employs quantum homo-

morphic encryption for security, demonstrating its effectiveness in reducing client-side

computational burden and protecting data privacy in the cloud. Fadli et al. [49] pre-

sented the Quantum Integrated Cloud Architecture (QICA), aimed at enhancing quan-

tum computing for aerospace applications, especially in satellite networks. They explore

the computational benefits of a Hybrid Quantum-Classical machine learning architec-

ture using IBM Quantum and Qiskit Machine Learning, demonstrating QICA’s poten-

tial in advancing aerospace technology. Yarter et al. [115] explore the use of quantum

neural networks (QNNs) within a quantum cloud paradigm for real-time audio classi-

fication, highlighting the feasibility and challenges of integrating quantum computing

simulations with edge devices for processing live audio data. Additionally, Hibat-Allah

et al. [50] leverage quantum cloud computing to compare the efficacy of classical and

quantum generative models, particularly Quantum Circuit Born Machines (QCBMs).

These applications highlight cloud-based QML deployment potential in handling large

datasets more efficiently than traditional cloud-based machine learning by leveraging

quantum parallelism and entanglement to speed up model training and data process-

ing.

One of the most promising applications of quantum computing lies in simulating

molecules and chemical reactions, tasks that are computationally intensive for classical

systems. With quantum computational devices accessible through cloud platforms, re-

searchers in computational chemistry can now perform simulation experiments more ef-

ficiently [118]. Notable milestones include Google’s simulation of the hydrogen molecule’s

ground state using three qubits [116] and IBM Quantum’s simulations of hydrogen,

lithium hydride, and beryllium hydride (BeH2) with six qubits [117]. These advance-

ments mark significant progress for new possibilities in drug discovery and materials

science. Further illustrating this progress, Kim et al. [119] demonstrate the practical

utility of quantum computing through experiments on a cloud-based superconducting

quantum processor, showcasing its application in simulating quantum many-body sys-

tems beyond classical computational limits, thereby demonstrating quantum cloud com-
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puting’s potential in fields that require high-fidelity quantum simulations.

Quantum cloud computing also plays a crucial role in cybersecurity applications, op-

timization, and other domains. Fang et al. [120] developed cloud-assisted quantum pro-

tocols for enhanced security in applications like Anonymous Voting and Multiparty Pri-

vate Set Intersection, leveraging quantum cryptography. Gong et al. [121] introduced a

novel Quantum Homomorphic Encryption Ciphertext Retrieval (QHECR) scheme based

on Grover’s algorithm, addressing the challenge of efficiently retrieving homomorphi-

cally encrypted data in quantum cloud environments. Azzaoui et al. [122] proposed a

Quantum Cloud-as-a-service for Smart Healthcare, combining Quantum Terminal Ma-

chines (QTM) and Blockchain for enhanced security and feasibility. Their architecture

offers a scalable and secure solution for complex healthcare computations, highlighting

the practicality and robust security of Q-OTP encryption. Similarly, Barletta et al. [123]

propose a Quantum as a Service (QaaS) architecture that leverages quantum computing

approach for enhancing security in smart cities, using quantum classifiers on the D-

Wave Leap and IBM Quantum Cloud to detect threats in real-time. These advancements

indicate that quantum cloud computing can offer more robust security than classical

cloud computing in scenarios requiring high data integrity and confidentiality. In the

domain of optimization and complex problem-solving, quantum cloud computing has

demonstrated its utility in areas that surpass classical computing’s capabilities. For in-

stance, Zhang et al. [124] propose a quantum solution to the Exactly-1 3-SAT problem,

leveraging the IBM Quantum platform and Grover’s algorithm to experimentally verify

the feasibility of solving NP-complete problems through quantum cloud resources.

In addition to these applications, quantum cloud computing is increasingly being

explored for broader commercial sectors, such as logistics, financial risk analysis, and

satellite communication, as outlined by Bova et al. [27] and Hassija et al. [125]. These

studies suggest that quantum cloud services may soon provide capabilities that classical

cloud infrastructure cannot efficiently handle, especially in fields requiring substantial

computational power and high-speed data processing. This growing list of use cases

demonstrates quantum cloud computing’s unique potential to surpass traditional cloud

computing, positioning it as a transformative tool for computationally demanding ap-

plications.
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2.5.4 Quantum Cloud Providers and Platforms

Cloud-enabled quantum hardware providers

Most quantum hardware vendors offer cloud-based access to their computation resources.

We summarize the latest developments of popular cloud-enabled quantum hardware

vendors in Table 2.5. Several vendors, such as IBM Quantum [89], Rigetti [19], and

IonQ [126], offer cloud-based computing services to their quantum computers, while

other providers like Amazon Braket [98] and Azure Quantum [17] mainly collaborate

with third-party hardware vendors to offer quantum computing services. Various tech-

nologies such as superconducting, trapped ions, neutral atoms, and quantum annealing

have been employed in building quantum chips (or quantum processing units - QPUs).

Each technique leverages distinct physical systems to implement qubits and quantum

operations [103].

The superconducting technique leverages the properties of superconducting circuits

to create qubits. This approach uses Josephson junctions to exploit quantum mechanical

phenomena at macroscopic scales, enabling the manipulation of quantum states. Super-

conducting qubits are known for their relatively more straightforward integration into

electronic systems and potential for scalability [138]. This approach can be considered

the most popular technique for developing quantum computers by many leading com-

panies such as IBM Quantum [89], Rigetti [19], Oxford Quantum Circuits (OCQ) [131],

and Google [130]. In 2019, Google claimed quantum supremacy with their Sycamore 54-

qubit superconducting processor, demonstrating it could perform a specific task in 200

seconds that would take the best classical supercomputer approximately 10,000 years,

marking a significant breakthrough in quantum computing [139]. However, access to

Google’s quantum processor has remained limited to the general public compared to

other hardware vendors. IBM Quantum offers a range of quantum processors available

on their cloud-based platform, from 5 qubits to 433 qubits. In 2023, they released the

Condor processor with 1,121 superconducting qubits and a high-performance 133-qubit

Heron processor, marking a significant milestone in quantum hardware development

[114]. IBM also demonstrated the utility in quantum computing with their 127-qubit su-

perconducting processor, showcasing accurate expectation values measurement beyond
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Table 2.5: A summary of quantum hardware vendors with cloud-based access.

Hardware vendor
QPU
technology

Max
qubit
count

Qubit
topology

Supported
SDKs

Cloud access

PC FC
Vendor’s
Cloud

External
Cloud

Alpine Quantum
Technologies [127]

Trapped
Ion

20 ✓
Qiskit,
Pennylane

✓ -

Atom Computing [128] Neutral Atom 1180 ✓ - - -

D-Wave [129]
Quantum
Annealing

5000* ✓ Ocean ✓ ✓

Google [130]
Super-
conducting

54 ✓ Cirq ✓ -

IBM Quantum [89]
Super-
conducting

1121 ✓ Qiskit ✓ ✓

IonQ [126] Trapped Ion 36 ✓
Qiskit, Cirq, Pennylane,
tket, Q#, etc ✓ ✓

Oxford Quantum
Circuits (OCQ) [131]

Super-
conducting

32 ✓ tket ✓ ✓

Pasqal [132] Neutral Atom 100 ✓ Pulser ✓ ✓
Quantum Computing
Inc (QCI) [133]

Photonics
(Entropy)

949** ✓ Qatalyst ✓ -

Quantinuum [134]
Trapped
Ion

56 ✓ tket, lambeq - ✓

QuEra [135] Neutral Atom 256 ✓ Braket - ✓

Quantum Inspire
(QuTech) [136]

Super-
conducting,
Solid-state spins

5 ✓ cQASM, QI ✓ ✓

Rigetti [19]
Super-
conducting

84 ✓ Quil ✓ ✓

Xanadu [137] Photonics 24 ✓
Pennylane,
Strawberry Fields, etc ✓ -

Notes. * Annealing qubit; **: Number of variables (qudit); ✓: Yes, -: Not available, PC: Partially connected,
FC: Fully Connected (Data compiled from publicly available vendor sources as of July 2024).
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classical computation capabilities, highlighting advancements in coherence, calibration,

and noise management as critical enablers for pre-fault-tolerant quantum computing ap-

plications [119]. Other companies such as Rigetti [19], Oxford Quantum Circuits (OCQ)

[131], and Quantum Inspire (QuTech) [136] also employed superconducting techniques

for developing their cloud-based quantum hardware. QuTech also demonstrates their

second hardware technique to develop a 2-qubit quantum processor based on single

electron spin qubits in silicon [140, 141].

Another popular quantum hardware technique is trapped ion, which leverages ions

(charged atoms) trapped in electromagnetic fields to function as qubits. Lasers are used

to perform qubit initialization, manipulation, and measurement. This method is known

for its long coherence times and high-fidelity operations. IonQ [126], Alpine Quantum

Technologies (AQT) [127], and Honeywell Quantum (now part of Quantinuum) [134]

are prominent vendors in this area, with all fully-connected qubit devices developed,

demonstrating advanced quantum computing systems based on trapped ions. Besides,

neutral atom technology, which uses lasers to trap and cool neutral atoms (atoms with no

net electric charge) in a 2D or 3D array, also caught attention. This technology promises

scalability and high qubit numbers, as Atom Computing [128] claimed that they suc-

cessfully developed a 1,180-qubit quantum computer in 2023 and are preparing to make

their system available for cloud-based access. Pasqal [132] and QuEra [135] are other

notable examples of companies exploring quantum computing with neutral atoms to

develop their cloud-based hardware. Furthermore, photonics is also a promising tech-

nique for developing quantum chips [142]. Quantum Computing Inc (QCI) introduced

their Dirac-3 quantum system as a new approach in quantum computing through En-

tropy Quantum Computing (EQC) [133] to support higher-order interactions among qu-

dits and leveraging entropy and noise, enabling operation at room temperature without

cryogenic environment, and promising enhanced computing speed and capacity. Uti-

lizing photonics, QCI’s system advances beyond traditional two-level qubits by imple-

menting multi-level qudits [143], with every single photon enabling up to 10,000 lev-

els through various degrees of freedom, like polarization and orbital angular momen-

tum [144]. This capability allows for the management of up to 949 photons/qudits,

where each photon’s degrees of freedom are harnessed to represent multiple levels, ef-
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fectively turning each variable into a qudit with its level signifying the variable’s value

[133]. Research into EQC is underway, with the potential to significantly enhance the

energy efficiency of quantum cloud computing by minimizing the cooling requirements

of quantum computational systems. Another company, Xanadu, [137] has developed its

nanophotonic quantum chip that can operate at room temperature, offering advantages

in stability and scalability [145].

While superconducting, trapped ion, photonics, and neutral atom techniques are em-

ployed to develop gate-based quantum computers, the quantum annealing approach

is designed to solve optimization problems by naturally finding a quantum system’s

ground state. It uses a quantum mechanical process to minimize energy states and find

solutions to optimization problems. D-Wave Systems [129] is the most well-known com-

pany specializing in quantum annealing technology, offering quantum cloud computing

services for specific optimization tasks. However, they recently added the gate-based

quantum model to their roadmap towards developing devices for universal quantum

computation.

The selection of quantum hardware technology plays a pivotal role in determining

the efficiency and type of computations that can be executed, directly affecting quantum

computing systems’ scalability, coherence time, and error rates. As this field progresses,

the refinement and interaction of these technologies will be fundamental in develop-

ing practical and broadly accessible quantum cloud computing services. Furthermore,

the cloud-based provision of quantum computational resources simplifies the integra-

tion with high-performance computing (HPC) resources, promising enhanced compu-

tational capabilities and broader application potential.

Quantum cloud computing frameworks and platforms

Apart from cloud services offered directly from the hardware vendors, as discussed in

the previous section, we summarize other cloud services and frameworks for quantum

computing in Table 2.6.

Most cloud-based quantum computing platforms provide commercial quantum com-

puting as a service. Major well-known cloud platforms such as Amazon Web Services
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Table 2.6: Representative commercial services and studies on frameworks/platforms
for quantum cloud computing

Platforms/
Framework

Type
Quantum
Backends

Supported
SDKs

Serverless
Model

Quantum Computing Models
Simulation Annealing Gate-based

1Qloud [146] CQS 1Qbit 1Qbit ✓
Amazon
Braket [98]

CQS
Rigetti, OCQ,
IonQ, QuEra

Braket, Qiskit,
Pennylane

✓ ✓ ✓

Azure
Quantum [17]

CQS
Quantinuum,
Rigetti, IonQ,
Pasqal

Q#, Qiskit,
Cirq,

✓ ✓

Google
Cloud [130]

CQS Google, IonQ Cirq ✓ ✓

IBM
Cloud [147]

CQS IBM Quantum Qiskit ✓ ✓ ✓

PlanQK [148] CQS
IBM Quantum,
Amazon Braket,
Azure Quantum

Qiskit,
Pennylane

✓ ✓ ✓ ✓

QEMIST [149] CQS 1Qbit OpenQEMIST ✓

QFaaS (Chapter 3) OSF
IBM Quantum,
Strangeworks

Qiskit, Cirq,
Q#

✓ ✓ ✓

QuantumPath
[22]

CQS
IBM Quantum,
Amazon Braket,
D-Wave, QuTech

Qiskit, Ocean,
Braket, Q#

✓ ✓ ✓

Strangeworks
[150]

CQS

IBM Quantum,
Amazon Braket,
Azure Quantum,
Hitachi, Toshiba,...

Qiskit, Braket,
Rigetti

✓ ✓ ✓ ✓

Notes. CQS: Commercial Quantum Service, OSF: Open-source Framework, QSim: Quantum simulator, ✓:
Yes
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(AWS), Microsoft Azure, Google Cloud, and IBM Cloud have started offering quan-

tum computing services in their cloud ecosystem, opening opportunities for integrating

quantum computation tasks with classical ones. IBM offers access to its self-developed

quantum computation resources via IBM Cloud [147] and IBM Quantum platform [89],

while AWS and Azure provide cloud services and platforms to access other quantum

hardware vendors, such as Rigetti, IonQ, and Quantinuum, OCQ, Pasqal, and QuEra.

These quantum cloud platforms also offer a range of Software Development Kit (SDK)

for designing, developing, and evaluating quantum applications. For example, IBM

Quantum provides users with multiple tools, such as IBM Quantum Composer and

IBM Quantum Lab, for designing, visualizing, executing, and analyzing quantum ap-

plications. Amazon Braket, Azure Quantum, and Google Cloud also offer their quan-

tum SDKs, naming Braket, Microsoft Quantum SDKs (along with Q# programming lan-

guage), and Cirq, respectively. Strangeworks collaborates with almost all major quan-

tum computing hardware and software vendors to create a comprehensive cloud plat-

form that offers users access to nearly all available quantum hardware and other soft-

ware platforms.

Besides, several cloud-based quantum software-oriented frameworks have been pro-

posed. Hevia et al. [22] proposed the QuantumPath platform to support the develop-

ment of quantum applications. This framework integrates multiple visual editors to aid

the design of quantum circuits and supports different SDKs, with the tendency to be-

come an agnostic software framework for quantum computing. Our proposed QFaaS

framework (see Chapter 3) is another open-source quantum software framework that

supports developing serverless quantum function-as-a-service applications. QFaaS in-

corporates multiple quantum SDKs and programming languages and can be extended

to work with different quantum cloud providers, such as IBM Quantum and Amazon

Braket. Furthermore, PlanQK [148] is a comprehensive quantum platform and ecosys-

tem to support the development of quantum workflow applications with a vision to-

wards establishing a quantum application marketplace. Besides, several orchestration

tools, such as Orquestra [151] and QuantMe [152], are proposed for integrating classical

components and workflow with quantum algorithms. Xin et al. [153] also introduced

their quantum cloud computing service, named NMRCloudQ, in which quantum hard-
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ware is developed based on a nuclear magnetic resonance (NMR) spectrometer. Apart

from offering quantum computing services, most quantum cloud platforms and frame-

works provide simulation environments for prototyping and developing quantum ap-

plications. Several cloud platforms, such as 1QCloud [146] and QEMIST [149], are dedi-

cated to providing quantum simulation services for specific problems such as optimiza-

tion and quantum chemistry.

2.5.5 Quantum Cloud Resource Management

Similar to traditional cloud computing, quantum resources must be efficiently managed

and allocated as quantum cloud computing continuously advances. However, quantum

cloud resource management is facing more complicated challenges. The first challenges

arise due to the heterogeneity of quantum resources in terms of qubit numbers, qubit

connectivity, error rates, and quantum processor speed. Indeed, each quantum hard-

ware technology has different advantages and limitations in its performance and scala-

bility. For example, trapped ion quantum devices can achieve higher quantum volume

(qubit quality) but face difficulty achieving high processing speed (CLOPS) [32, 154]. In

contrast, the opposite can be seen in spin-based quantum devices. Second, quantum

resources are almost fixed, i.e., they cannot be divided and scaled flexibly in the same

ways as classical ones. We can create multiple virtual machines or containers inside

a single classical host machine or a cluster of machines as isolated environments for

executing independent tasks concurrently. However, no corresponding techniques for

quantum resources have been proposed yet. Besides, each quantum task has different

requirements, which are unknown or unpredictable, to allocate an appropriate quantum

device for execution. The uncertainty of quantum task requirements and the fixed re-

source amount of quantum computers accelerate the complexity of quantum resource

management problems and result in underestimated or overestimated resource alloca-

tion. While this is an emerging topic in quantum cloud computing, several studies have

begun investigating various aspects of quantum cloud resource management problems,

as shown in Table 2.7.
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Table 2.7: Mapping studies in resource management for quantum cloud computing

Category Approach Studies

Task Scheduling/Placement

Statistical Analysis [31, 155]
Rule-based Policy [156]
Round Robin Algorithm [157, 158]
Greedy Algorithm [159]
Reinforcement Learning [160]

Task Orchestration
Parallel Task Allocation [161–164]
Load Balancing [165]
Middleware [20]

Quantum Task Scheduling/Placement

Quantum task scheduling, or placement, involves efficiently assigning quantum tasks

to available quantum processors based on factors like resource availability, execution

time, and hardware compatibility to maximize computational efficiency and minimize

resource contention in the quantum cloud. When designing a comprehensive resource

allocation for the quantum cloud computing paradigm, multiple factors must be consid-

ered. In practice, IBM Quantum uses fair-share scheduling algorithm8 to ensure fairness

in their Open plan quantum cloud service, which is freely public for the research com-

munity. When a new quantum job arrives, it is placed in the waiting queue from all

users, and its order to be executed will be dynamically determined using the fair-share

algorithm. Ravi et al. [155], analyzed multiple quantum jobs and resource utilization

characteristics using IBM Quantum Cloud services for two years. They evaluated the

significance of the execution times, waiting times, and compilation times of quantum

circuits, fidelity, error rates, and the utilization of quantum machines. This study gave

insights into numerous factors affecting quantum task execution on quantum cloud de-

vices. In the following study [31], they proposed a prediction model to predict the fi-

delity of quantum computers and queueing time for each device based on historical

data of IBM Quantum computers. To schedule incoming jobs to an appropriate quan-

tum computer, this work compiles and transpiles the corresponding quantum circuit for

each quantum computer, extracts the key features of the circuit, and maps it with the

characteristics of the machine. Then, using correlation coefficient techniques, the best-

8https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/queue/
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suited quantum computer will be selected for job execution. Although the proposed

method, which uses statistical analysis, is straightforward, this work can be considered

the first work on resource management for quantum cloud computing. Salm et al. [156]

presented the NISQ Analyser as a novel tool designed to optimize the quantum backend

selection process by evaluating the specific requirements of quantum tasks. It assesses

essential parameters, including qubit requirements, circuit depth, and gate complexity,

to ensure the most efficient alignment of quantum algorithms with available quantum

computing resources, thereby enhancing the practicality of quantum computing appli-

cations. In addition to proposing the quantum serverless framework, we also introduced

a policy-based quantum backend selection that prioritizes fidelity and execution speed

based on properties of quantum tasks and available quantum computation backends

(see Chapter 3). Focusing on the quantum network resource aspects, Cicconetti et al.

[157] presented another resource allocation technique for distributed quantum comput-

ing. They leveraged the Weighted Round Robin (WRR) algorithm to design the network

resource allocation technique for quantum applications. The key idea is to pre-calculate

the weight of all traffic flows in each quantum application and use the round-robin strat-

egy to assign network resources. They also proposed a quantum network provisioning

simulator for the evaluation and showed the trade-offs between fairness and time com-

plexity of the network resource allocation algorithm. Similarly, Zhang et al. [158] pro-

posed a new task scheduling scheme based on a round-robin algorithm for cloud-based

quantum computing platforms, focusing on user and task classification. This approach

aims to reduce waiting times for high-priority users, thereby enhancing their experience

and addressing the challenge of limited access to high-quality quantum computing re-

sources. Furthermore, Cicconetti et al. [159] also proposed a Greedy-based algorithm

to achieve fair resource allocation among quantum computation nodes, ensuring ser-

vice differentiation across a networked quantum infrastructure. Recent studies have ap-

plied reinforcement learning techniques to optimize task scheduling efficiency. We also

proposed the DRLQ framework (see Chapter 5) and QFOR framework (see Chapter 6),

which leverages deep reinforcement learning algorithms, including Deep Q Network

(DQN) and Proximal Policy Optimization (PPO) for dynamic task placement. These

method enhances adaptability to changing resource conditions, reducing task comple-
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tion time and rescheduling attempts while maximizing the quantum execution fidelity.

Similarly, Li and Zhao [160] utilized reinforcement learning with a Graph Convolutional

Network (GCN) model to improve resource allocation through device allocation and cir-

cuit deployment, achieving a significant reduction in quantum task execution time.

Quantum Task Orchestration

Quantum task orchestration is a critical aspect of quantum resource management, fo-

cusing on the efficient orchestration of quantum (and classical) tasks across multiple

computation resources in cloud environments. Due to the error-prone nature of NISQ

devices, only quantum circuits with a limited number of qubits can be precisely exe-

cuted. It leads to the common problem of under-utilizing quantum resources as only

more qubits are wasted, and only one circuit can be executed each time. Therefore,

parallel processing and multi-programming techniques are essential for maximizing the

resource utilization for quantum cloud computing [161]. Das et al. [162] presented their

studies on quantum multi-programming and proposed several solutions for enabling

the multi-programmed NISQ devices. Specifically, they proposed three methods, in-

cluding 1) a qubit partitioning method to ensure fairness in qubit allocation, 2) a De-

layed Instruction Scheduling policy to reduce the multi-program interference, and 3)

an Adaptive Multi-Programming to allow flexible switching between single- and multi-

programming. Ohkura et al. [163] proposed palloq, a parallel allocation protocol for

quantum circuits, which accelerates the performance of quantum multi-programming

in NISQ devices. They also considered error detection using randomized benchmarking

methods. Nguyen et al. [164] developed a full-stack software framework to enable paral-

lel quantum computing for hybrid quantum workloads. This framework supports three

modes to distribute quantum tasks, including Message Passing Interface (MPI) protocol

and local and cloud-based quantum accelerators, which are built based on nitrogen-

vacancy (NV) centres in the diamond. Alvarado-Valiente et al. [165] propose a quantum

orchestrator designed to streamline the execution of quantum circuits across multiple

service providers, facilitating load balancing and simplifying resource access for devel-

opers working with cloud-based platforms, including Amazon Braket and IBM Quan-
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tum. Faro et al. [20] propose a heterogeneous computation architecture that integrates

quantum and classical computing, demonstrating how a middleware solution can facil-

itate seamless task orchestration and improve computational efficiency across quantum

and classical resources.

Simulation Toolkits for Quantum Cloud Resource Management Problems

In the evolving landscape of quantum cloud computing, where accessibility to physi-

cal quantum resources is limited, simulation toolkits like CloudSim [34] in the classical

domain are pivotal for designing and evaluating quantum cloud resource management

algorithms. We also proposed iQuantum (see Chapter 4), a toolkit for modelling and

simulating resource scheduling algorithms on the cloud. This toolkit is particularly ben-

eficial for simulating quantum computing scenarios that integrate cloud-based quantum

resources, focusing on job scheduling and hybrid quantum-classical task orchestration.

This simulator highlights the importance of standardization and the creation of such

simulators and toolkits for cloud-based quantum computing, as well as the extension to

edge computing environments.

2.5.6 Quantum Cloud Security and Privacy

As quantum cloud computing is in its infancy, a limited number of works in the liter-

ature focus on its security and privacy. On the contrary, many studies pay extensive

attention to quantum security [43, 61, 166–169], post-quantum cryptography [170, 171],

and quantum-safe techniques [172].

Security and data privacy threats of quantum cloud computing

In quantum cloud computing, the integration of quantum services via cloud platforms

can introduce several security and privacy challenges. The accessibility of cloud-based

quantum computing services potentially enables adversaries to exploit these resources

for unauthorized access to sensitive data without needing proprietary quantum hard-

ware. Initial attack vectors can target the exploitation of quantum resources to compro-
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mise non-quantum-safe infrastructures or the theft of credentials securing cloud-based

quantum services, enabling service manipulation or compromise [173]. The necessity for

secure data transfer channels in remote quantum computing emphasizes the importance

of network authenticity, especially in cloud environments where physical network char-

acteristics are abstracted [174]. Malicious third-party cloud computers and the vulnera-

bilities they introduce, such as hacking, data leaks, and insecure APIs, are well-known

threats in the classical domain [175]. As the quantum computing ecosystem expands in

scope and practicality, an increase in providers, including potentially unreliable third-

party vendors, offering quantum computing as a service is anticipated. This situation

presents multiple security challenges. Some emerging providers might attract customers

with the promise of cheaper access to quantum computing resources and reduced wait-

ing times. However, if the security measures of these services are not rigorously as-

sessed, they could introduce significant risks. This scenario is similar to the risk of

employing untrusted compilers for constructing quantum circuits, which could poten-

tially expose or compromise proprietary information [173, 176]. Additionally, quantum-

specific challenges such as crosstalk noise present significant security threats, as adver-

saries can exploit it to interfere with and manipulate quantum computations on cloud-

based platforms [177]. Furthermore, the shared nature of cloud quantum computing

resources raises concerns over intellectual property (IP) security. Quantum computers

are susceptible to attacks like fault injection in multi-tenant computing environments.

Compute performance can also be degraded for denial-of-service attacks if third-party

calibration services provide inaccurate error rates of qubits or if the qubits are miscali-

brated. Access to trustworthy quantum computing providers often involves long wait

times and high costs, tempting users to opt for more affordable, readily available al-

ternatives that may compromise security, risking intellectual property theft or tamper-

ing with computation results. The rise of efficient yet unreliable compilation services

poses a significant threat to the integrity of quantum circuits by potentially introduc-

ing malicious code [43, 178]. Baseri et al. [169] also provides a comprehensive analy-

sis of quantum-induced cybersecurity risks for critical infrastructure and cloud-based

environments, proposing a security framework that highlights the need for proactive

quantum-resilient strategies across cloud service layers. Despite quantum computing’s
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capacity to address strategically critical problems involving sensitive data, its security

and privacy aspects remain underexplored.

Recent advances in securing and privacy-preserving quantum cloud computing

Advancements in techniques for securing and ensuring data privacy for quantum cloud

computing draw from quantum-specific and traditional cloud security measures, focus-

ing on robust authentication, verifiability, trustworthiness, and malicious attack detec-

tion and mitigation. Table 2.8 maps relevant studies on securing and privacy-preserving

quantum cloud computing.

Table 2.8: Mapping studies in securing and privacy-preserving quantum cloud comput-
ing.

Problem Approach Studies

Enhancing privacy and verifiability
Blind quantum computation [179, 180]
Cryptographic verification [181]

Securing remote quantum execution
Remote state rotation via classical communications [182]
Quantum key distribution (QKD) [183]

Enhancing trust and computation fidelity
Quantum Physically Unclonable Function (QuPUF) [184]
Ensemble of Diverse Mappings (EDM) [185]

Data encryption retrieval Grover’s algorithm-based scheme [121]
Securing inputs for QML tasks in QCC Subcircuit encryption [186]
Malicious error rate changes detection Test points injection [187]
Adversarial tampering Iteration distribution & parameter re-initialization [178]

Several studies considered privacy and verifiability for quantum computations in

cloud computing environments. Li et al. [180] introduced a verifiable quantum cloud

computation scheme leveraging blind computation, addressing privacy and verifiability

for clients in cloud-based quantum computing with a novel use of cluster states, enhanc-

ing the scheme’s suitability for cloud architectures and promoting data confidentiality.

Distributed approaches for protecting quantum circuits through classical interfaces have

also been proposed, specifically for prime factorization, relying on shared entanglement.

Huang et al. [179] conducted an experiment demonstrating blind quantum computing

for entirely classical clients, showing that clients without quantum devices can perform

computations securely on quantum servers using entanglement, including tasks like fac-

torization with built-in verification for server honesty and correctness, marking a cru-

cial step towards secure cloud quantum computing. Utilizing a cryptographic verifi-
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cation approach, Chen et al. [181] proposed a novel scheme to ensure the authenticity

of quantum computing within cloud services, differentiating between actual quantum

processing and classical simulation. Another aspect that has been explored is securing

communications for executing tasks on quantum cloud platforms. QEnclave [182] intro-

duces a secure, classical-controlled cloud-based quantum hardware for remote quantum

process execution, bringing classical secure enclave principles to quantum computing

and ensuring user privacy. In a recent study, Huang and Emeakaroha [183] propose

a framework for distributed quantum calculations over a multi-cloud architecture, us-

ing the Quantum Key Distribution (QKD) protocol to secure inter-cloud communica-

tions and enhance the reliability of data transfers across heterogeneous quantum service

providers.

Besides, few studies proposed solutions for enhancing trust and computation fidelity

for quantum cloud tasks. Phalak et al. [184] explored security concerns in cloud-based

quantum computing, proposing Quantum Physically Unclonable Functions (QuPUF) to

ensure trustworthiness and security. Addressing the risk of users being allocated infe-

rior quality quantum hardware by untrustworthy third parties or due to malicious tam-

pering, they developed QuPUF variants based on superposition and decoherence and

tested them on IBM Quantum hardware. Their solution demonstrates the feasibility of

using QuPUFs to distinguish between quantum hardware, enhancing user trust in cloud

quantum computing environments. Tannu et al. [185] proposed the Ensemble of Diverse

Mappings (EDM) method to counteract the vulnerability of NISQ computers to corre-

lated errors, improving the reliability of quantum computations. By diversifying qubit

allocations across multiple trials, EDM decreases the likelihood of consistent errors,

thereby enhancing the accuracy of output inference. Their approach demonstrated a

significant improvement in inference quality compared to existing mapping algorithms.

Adapting classical security technologies like homomorphic encryption for quantum re-

silience is crucial, as conventional encryption might falter against quantum capabilities.

Considering cloud-based quantum data encryption ciphertext retrieval, Gong et al. [121]

present a Grover algorithm-based quantum homomorphic encryption scheme designed

for secure ciphertext retrieval in quantum cloud environments, enhancing data privacy

through efficient encrypted search without requiring client-server interaction. Wang et
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al. [186] introduced PristiQ, a cross-layer framework for data security in Quantum Ma-

chine Learning (QML) under Quantum-as-a-Service (QaaS), utilizing a combination of

encryption circuits and reinforcement learning to secure data encoding while maintain-

ing model performance.

Furthermore, quantum cloud attack detection and mitigation have been studied re-

cently. Acharya et al. [187] addressed the reliability challenges in NISQ computers by

proposing a method to detect malicious changes in error rates that could alter quantum

circuit outputs. Their lightweight approach involves inserting test points into circuits

to monitor error rates relative to qubit allocations, employing superposition, classical,

and un-compute tests for side-channel analysis, and offering a security enhancement for

NISQ computing. Upadhyay and Ghosh [178] propose a security framework to coun-

teract adversarial tampering in hybrid quantum-classical computations by distributing

computations across trusted and untrusted hardware, along with adaptive iteration dis-

tribution and parameter re-initialization to enhance resilience against suboptimal tam-

pered outputs.

2.6 Limitations and Threats to validity

Systematic mapping studies inherently suffer from certain limitations due to the re-

search design [55, 188]. In this section, we discuss possible limitations that may threaten

the validity of the results.

Completeness and Selection Bias: A significant challenge in conducting systematic

mapping studies is ensuring comprehensive coverage of relevant literature while miti-

gating selection bias. In this study, we implemented a rigorous search protocol utilizing

five major databases, which yielded a substantial corpus of related papers. However,

it is essential to acknowledge the potential for unintentional omissions, particularly re-

garding studies that lie at the intersection of quantum computing and cloud computing.

Furthermore, while our search strings were optimized to capture a maximum number

of known quantum cloud computing studies, there remains a possibility that some re-

search not explicitly proposing solutions for quantum cloud computing may have been

overlooked. This limitation underscores the complexity of defining precise boundaries
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for emerging interdisciplinary fields. We have also omitted a search for other underlying

aspects of quantum cloud computing, such as quantum networks and communications,

quantum hardware, and quantum error mitigations, as these can be considered dedi-

cated research domains and have been studied in other systematic studies.

Generalization: Besides, the threat of redundancy and limited generalizability has

also been considered. By conducting the rigorous literature selection and quality assess-

ment in our review protocol (see Section 2.4), we minimise the possibility of duplicated

publication in the final selected papers in the review. Additionally, we examined and

derived the publication trend to identify the field’s key research areas. However, as

quantum cloud computing is an emerging area, it is possible to have more subtopics

that can be explored in the near future, such as virtualisation and containerisation for

quantum computing resources.

Data Extraction and Analysis: To enhance the comprehensiveness of our analysis

regarding the practical status of quantum cloud computing, we conducted a thorough

examination of the characteristics of available quantum cloud services offered by indus-

try vendors. However, it is important to note that our findings may not fully reflect the

most recent developments for future readers due to the rapid advancements in quan-

tum computing, particularly in quantum hardware. This limitation is inherent to the

dynamic nature of the field. Furthermore, it is worth acknowledging that some service

providers did not explicitly disclose comprehensive information about their offerings.

Consequently, there is a possibility that certain aspects of quantum cloud computing

may have been inadvertently omitted from our analysis. This potential information gap

underscores the challenges of conducting exhaustive reviews in emerging technological

domains. Another potential issue is the depth of analysis of each paper. However, as a

systematic mapping study, we aim to provide a holistic view of the big picture of quan-

tum cloud computing and make it the cornerstone for further systematic review studies

with more depth regarding each aspect of quantum cloud computing.
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2.7 Summary

In this chapter, we carried out a comprehensive review of recent advances and open

problems in quantum cloud computing. We introduced emerging concepts and models

of quantum cloud, such as hybrid classical-quantum cloud, quantum computing as a

service, and quantum serverless. Besides, we summarized and mapped studies in each

aspect to highlight the importance of combining quantum and cloud computing to accel-

erate quantum engineering. We discussed the potential applications of quantum clouds

in different areas. We explored key research problems in quantum clouds, including

resource management, distributed computation, and quantum cloud security. We also

highlighted several research challenges to advance the quantum cloud. Although there

are still challenges to be addressed, quantum cloud computing has the potential to drive

innovation and bring significant benefits to realize the advantage of practical quantum

computing. We believe that quantum cloud computing is a promising strategy to rev-

olutionize how quantum computing is used to solve intractable problems for classical

computing in the coming years. This calls for access to quantum hardware, robust net-

work connectivity, quantum software tools, security measures, scalability, interoperabil-

ity, and cost-effectiveness.





Chapter 3

A Serverless Function-as-a-Service
Framework for Quantum Computing

This chapter proposes QFaaS, a holistic Quantum Function-as-a-Service framework, which lever-

ages the advantages of the serverless model, DevOps lifecycle, and the state-of-the-art software tech-

niques to advance practical quantum computing for next-generation application development in the

NISQ era. Our framework provides essential elements of a serverless quantum system to stream-

line service-oriented quantum application development in cloud environments, such as combining

hybrid quantum-classical computation, automating the backend selection, cold start mitigation, and

adapting DevOps techniques. QFaaS offers a full-stack and unified quantum serverless platform by

integrating multiple well-known quantum software development kits (Qiskit, Q#, Cirq, and Braket),

quantum simulators, and cloud providers (IBM Quantum and Amazon Braket). In this chapter,

we propose the concept of quantum function-as-a-service, system design, operation workflows, im-

plementation of QFaaS, and lessons learned on the benefits and limitations of quantum serverless

computing. We also present practical use cases with various quantum applications on today’s quan-

tum computers and simulators to demonstrate our framework’s capability to facilitate the ongoing

quantum software transition.

3.1 Introduction

Recent breakthroughs in quantum hardware development are creating opportunities for

its use in many applications, making it becoming a critical future technology attracting

This chapter is derived from:

• Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “QFaaS: A Serverless Function-as-a-
Service Framework for Quantum Computing”, Future Generation Computer Systems (FGCS), Volume
154, Pages: 281-300, ISSN: 0167-739X, Elsevier Press, Amsterdam, The Netherlands, May 2024
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significant investment at the global level [57]. The rapid advancements in quantum

hardware trigger more investments in quantum software engineering and quantum al-

gorithms development to maximize the practical use of quantum computers. Quantum

computers have demonstrated their abilities to solve many complex problems which are

challenging to tackle with classical supercomputers, such as molecule simulations [117],

machine learning [68], cryptography [189], and finances [190]. Some notable algorithms

have been proposed in the last few decades, such as Deutsch-Jozsa’s [191], Shor’s [2],

and Grover’s [3]. Some of these algorithms have been directly applied to problems of

practical relevance, albeit at the proof-of-concept level, due to quantum hardware limi-

tations.

Despite the inevitable prospect of quantum computing for future-generation com-

putation, quantum software engineering is an early-emerging domain with numerous

open challenges. First, the development of quantum applications is complicated and

time-consuming for software engineers, mainly because of the requirement for prior

quantum knowledge. Indeed, quantum programming is underpinned by the principles

of quantum mechanics, which are quite different from the traditional models. For ex-

ample, the basic difference between quantum and classical computing comes from their

fundamental unit: a classical bit has one state, either 0 or 1, whereas a quantum bit (or

qubit) could also be placed in a superposition state, i.e., a combination state of 0 and 1

[69]. A software engineer must overcome the hurdle of learning quantum mechanics to

develop quantum applications.

Second, quantum computing services are still heavily relying on classical servers

for circuit compilation due to the lack of quantum data storage methods in a quantum

computer. In classical computing, the compiled binaries of applications can be installed

or deployed on persistent storage mediums, allowing them to remain available for re-

execution without the need to recompile the code for each use. By contrast, quantum

computing services currently do not possess an analogous capability for persistent stor-

age of quantum programs. Consequently, when quantum computation is invoked, it

necessitates a classical driver to compile a quantum circuit tailored to the specific quan-

tum processor [108]. This circuit is then loaded into the quantum processing unit (QPU)

for execution, with the outcome derived from one or more iterations (shots). Addition-
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ally, classical computing resources can be requisitioned for post-processing and storing

the results of the quantum execution.

Besides, the existence of many quantum software development kits (SDKs) tightly

coupled with specific vendor platforms presents challenges such as data lock-in and

limitations in migrating software deployments across various platforms. Each SDK and

programming language has distinct requirements for environment configuration, syn-

tax, and interaction methods with their respective quantum simulators and comput-

ers. Additionally, there is no well-known standard or lifecycle in quantum software

engineering similar to practices like Agile and DevOps in the traditional realm [192].

Although some efforts have been made to deal with this issue, such as preliminary ap-

proximations based on Model-Driven Engineering (MDE) [193], a comprehensive solu-

tion to establish a unified quantum software platform capable of seamlessly working

with multiple quantum SDKs and providers remains necessary.

Presently, quantum computing resources remain constrained within the noisy intermediate-

scale quantum (NISQ) era [15], characterized by limitations in both the quantity and

quality of available qubits. Also, access to quantum computing services is exclusively fa-

cilitated through cloud-based platforms, which often incur substantial costs. Indeed, the

most widely adopted way to access today’s quantum computers is through a cloud ser-

vice from external vendors, such as IBM Quantum [16], Amazon Braket [98], and Azure

Quantum [17]. To ensure a mutually advantageous relationship between quantum cloud

providers and clients, it is crucial to establish a win-win paradigm that maximizes the

benefits of quantum computing while optimizing both budgetary and quantum resource

considerations. In this context, the current pay-per-use pricing model offered by cloud

vendors must be complemented by an appropriate computing model that effectively

balances the advantages for both parties involved.

Furthermore, the ongoing evolution of new computational paradigms raises a strate-

gic decision in the transition towards incorporating quantum computing: determining

the extent of integration within existing classical systems. It is currently impractical to

envision an entire replacement of quantum systems for all computational tasks due to

efficiency considerations. For example, basic arithmetic operations, such as summing

two integers, are far more efficiently executed on classical computers. Thus, the fore-
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seeable future points to a hybrid approach, where quantum computing is employed for

specific, complex problems that are beyond the capabilities of classical computers, while

routine tasks remain with classical solutions. This integration strategy is particularly ap-

plicable during the NISQ era, where leveraging both technologies’ strengths is essential

for optimizing performance [59].

3.1.1 Our Contributions

To address the research challenges highlighted above, we propose QFaaS - a novel and

versatile Quantum Function-as-a-Service framework without the vendor lock-in problem.

The major contributions and novelty of our proposed work are:

• QFaaS framework represents a holistic serverless framework for quantum com-

puting, enabling the seamless integration of quantum computation within estab-

lished classical systems. We tackle the challenges associated with platform and

data lock-in in serverless quantum computing by incorporating multiple quantum

SDKs, namely Qiskit, Cirq, Q#, and Braket, to perform the hybrid computation on

classical computers, quantum simulators, and quantum computers provided by

multiple cloud vendors, including IBM Quantum and Amazon Braket.

• We introduce the concept of quantum functions, quantum function-as-a-service,

sample workflows, which involve both classical and quantum computation, and

discuss their benefits for quantum software development. Our framework pro-

vides a comprehensive reference for quantum software engineers and industries

to design and develop their service-oriented quantum platforms.

• We propose the practical quantum serverless system architecture with six extend-

able system layers, a core API set, and a quantum function programming library.

In addition to the main framework architecture, we propose an adaptive quantum

backend selection policy that determines the most appropriate quantum compu-

tation system for executing the quantum function. Besides, we present a caching-

based policy to mitigate the cold start problem, which helps to reduce the latency

of quantum function invocation. We utilize the state-of-the-art software and sys-
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tem techniques for quantum software development, such as containerization and

DevOps lifecycle. By leveraging Kubernetes as the underlying orchestration, our

framework is portable and scalable for further advancement.

• We empirically validate the proposed framework through the practical implemen-

tation of all its components, following an open-source-oriented approach. Addi-

tionally, we showcase two sample operational workflows within the system, cater-

ing to both quantum software engineers and end-users. These workflows demon-

strate how our framework can effectively support the development and utilization

of hybrid quantum-classical applications.

• We conduct thorough experiments using various quantum algorithms on different

quantum simulators and quantum computers to evaluate the performance of our

framework. Through this evaluation, we provide practical insights into the current

state of NISQ devices and discuss the limitations and lessons learned from the

serverless quantum computing model.

The rest of this chapter is organized as follows: Section 3.2 introduces the current

state-of-the-art in quantum software engineering, the quantum computing as a service

(QCaaS) model, and serverless computing. Section 3.3 proposes the concept of quantum

functions and quantum function-as-a-service. Then, Section 3.4 presents the details of

the QFaaS framework, including system architecture and main components. Section

3.5 describes the design and implementation of the QFaaS framework. Then, Section 3.6

demonstrates the operation and validation of QFaaS with practical use cases. We discuss

the benefits of using QFaaS for quantum service-oriented application development and

lessons learned on the limitations of the quantum serverless approach in Section 3.7.

Section 3.8 discusses the related work and compares our framework’s advantages with

existing work. Finally, we conclude the chapter in Section 3.9.

3.2 Background

This section outlines the state-of-the-art development of quantum software engineering,

quantum computing service model, and serverless quantum computing. A brief intro-
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duction to quantum computing and gate-based quantum model for broad readers can

be found in other well-known books such as [69], [194]. It is important to note that our

focus in this work is on gate-based quantum computing SDKs and platforms due to

their broad applicability and active development by many well-known quantum cloud

providers, such as IBM Quantum [16] and Amazon Braket [98].

3.2.1 Quantum SDKs and programming languages

Some popular quantum software development kits (SDKs) and programming languages

that originated from well-known companies are:

• Qiskit [195] (by IBM) is one of the most popular Python-based open-source SDKs

for developing gate-based quantum programs. It offers a wide range of additional

libraries and support tools, particularly tailored to the IBM Quantum platform

[16].

• Cirq [196] (by Google) is a prevalent open-source SDK for quantum programming.

This SDK supports writing, manipulating, and optimizing quantum gate-based

circuits. Cirq programs can run on built-in simulators and Google’s quantum pro-

cessors.

• Q# [197] (by Microsoft) is a new programming language from Microsoft for devel-

oping and executing quantum algorithms. It comes along with Microsoft’s Quan-

tum Development Kit, which includes a set of toolkits and libraries for quantum

software development.

• Braket [98] (by Amazon) is an emerging Python-based SDK to interact with Ama-

zon Braket service [98]. This SDK provides multiple ways to prototype and de-

velop hybrid quantum applications, then run them on simulators or quantum

computers.

Besides, there are numerous quantum languages and SDKs proposed by research groups

over the world, such as Forest and pyQuil by Rigetti [198], Strawberry Fields [199] and

PennyLane [200] by Xanadu, Quingo [201], QIRO [202], and qcor [203].
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3.2.2 Current state of quantum computing: The NISQ era

John Preskill proposed the “Noisy Intermediate-Scale Quantum (NISQ)” term in 2018 [15]

to describe the current state of quantum computers. This term indicates two charac-

teristics of today’s quantum devices, including “noisy,” i.e., unstable and error-prone

quantum state due to the affection of various environmental actions, and “intermediate

scale,” i.e., the quantum volume is at the intermediate level, with about a few tens of

qubits [192]. Due to the NISQ nature, the typical pattern for developing today’s quan-

tum programs combines quantum and classical parts [192]. In this hybrid model, the

classical components are mainly used to pre-process and post-process the data. In con-

trast, the remaining part is sent to quantum computers for computation. The quantum

execution parts are repeated many times and measure the average values to mitigate the

error caused by the noisy quantum environment. An example of the hybrid quantum-

classical model is Shor’s algorithm [2] to find prime factors of integer numbers. In this

algorithm, we execute the period-finding part, leveraging the Quantum Fourier Trans-

form on quantum computers and then performing the classical post-process to measure

the prime factors based on the outcome of the quantum part.

3.2.3 Quantum Computing as a Service (QCaaS)

Today’s quantum computers are made available to the industry and research commu-

nity as a cloud service by a quantum cloud provider [108]. This scheme is well known

as Quantum Computing as a Service (QCaaS or QaaS) [107], which corresponds with

well-known paradigms in cloud computing such as Platform as a Service (PaaS) or In-

frastructure as a Service (IaaS). In terms of QCaaS, software engineers can develop quan-

tum programs and send them to quantum cloud providers to execute those programs

on appropriate hardware. After finishing the computation, the users only need to pay

for the actual execution time of the quantum program (pay-per-use model). In this way,

QCaaS is an efficient way that optimizes the user’s budget for using quantum services

and the provider’s resources. Many popular cloud providers nowadays offer quantum

computing services using their quantum hardware, such as IBM Quantum [16], which

is publicly accessible for everyone in their early phase. Besides, other quantum comput-
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ing services (such as Amazon Braket [98], and Azure Quantum [17]) collaborate with

other hardware companies such as D-Wave, Rigetti, and IonQ to provide commercial

services. However, this paradigm still faces many challenges before solving real-world

applications due to the limitations of today’s NISQ computers [15]. These devices have

a small number of qubits that are error-prone and limited in capabilities. Therefore, im-

proving the quality and quantity of qubits for quantum computers will accelerate the

QCaaS model and quantum software development.

3.2.4 Serverless Computing and Function as a Service (FaaS)

In the classical computing domain, serverless is the state-of-the-art computing model,

which can be considered as a second phase for cloud computing [204]. This computing

model fits with modern software architecture, especially the microservice applications,

where the overall application is decomposed into multiple small and independent mod-

ules [205]. The serverless computing concept generally incorporates both Function-as-

a-Service (FaaS) and Backend-as-a-Service (BaaS) models. FaaS refers to the stateless

ephemeral function model where a function is a small and single-purpose artifact with

few lines of programming code. BaaS is a concept to describe serverless-based file stor-

age, database, streaming, and authentication services.

As FaaS is a subset of the serverless model, its main objective is to provide a concrete

and straightforward way to implement software compared with traditional monolith

architecture. FaaS allows the software engineer to focus only on coding rather than

environmental setup and infrastructure deployment. A function can be triggered by a

database, object storage, or deployed as a REST API and accessed via an HTTP con-

nection. Functions also need to be scalable, i.e., automatically scaling in when idle and

scaling out when the request demand increases. In this way, a FaaS platform can be

an efficient way to optimize the resources for providers and reduce costs for customers.

There are numerous open-source FaaS platforms in the cloud-native landscape, such

as OpenFaaS, OpenWhisk, Kubeless, Knative, and many commercial platforms such as

AWS Lambda, Azure Functions, Google Cloud Functions [206].
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3.3 Quantum Serverless and Quantum Function-as-a-Service

3.3.1 Serverless Quantum Computing

A serverless quantum computing model is a viable solution for effectively utilizing con-

temporary quantum computers. Each quantum device, characterized by inherently lim-

ited resources, is made accessible globally via quantum cloud services. Indeed, by de-

composing a monolith application into multiple single-purpose functions, we can dis-

tribute them to various backend devices. Furthermore, we can implement a hybrid

quantum-classical model by combining quantum functions and classical functions in

a unified application. This approach can leverage the power of existing quantum com-

puters to facilitate new promising techniques, such as hybrid quantum-classical machine

learning [207].

The adaptation of the serverless model to quantum computing must account for key

differences in deployment and execution when compared to traditional computing ser-

vices. In classical computing, a service can be deployed once to a server, whether phys-

ical or virtual, and then it can be repeatedly invoked by end-users. This permanent de-

ployment is not yet feasible with current quantum computing technology., i.e., a quan-

tum program cannot be deployed persistently in a specific quantum computer [108].

Instead, an appropriate quantum circuit needs to be built every time we execute a spe-

cific task. Then, that circuit will be transpiled to corresponding quantum system-level

languages (such as QASM [208]) before being sent to a quantum cloud service for exe-

cution. Therefore, an adaptable serverless model for executing quantum tasks is needed

to address this challenge. By leveraging the ideas of the serverless model and combin-

ing quantum and classical parts in a single service, we can adapt to the current nature

of quantum cloud services, accelerate the software development process, and optimize

quantum resource consumption. This kind of computing model could be a potential

approach to enable software engineers to realize the advantages of quantum computing

and explore more complicated quantum computation in the future.
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Figure 3.1: Service-Oriented Quantum-Classical Application Model

3.3.2 Quantum Function-as-a-Service (QFaaS)

In serverless computing, the Function-as-a-Service (FaaS) indicates a service-oriented

cloud computing model in that the software engineer only needs to focus on coding

without worrying about server configuration. A function is made by small pieces of

programming code and is deployed as a service, which can be triggered and executed

on demand [209].

By bringing the FaaS model to quantum computing, we propose the concepts of Quan-

tum FaaS. A quantum function can be considered an ephemeral, event-triggered, and

single-purpose quantum program with few pieces of quantum code. Due to the lim-

itation of the NISQ devices and the difference in the software deployment model, we

need to leverage the classical resources and techniques for developing and executing the

quantum function. Specifically, a software engineer can still focus solely on coding quan-

tum functions with high-level quantum SDKs (such as Qiskit, Cirq, Q#, or Braket) with-

out needing to care about the quantum programming environmental setup or server de-

ployment. The function code is automatically deployed in a containerized environment

and is published as a service with an API endpoint for invoking. Whenever that ser-

vice is triggered, the programming logic defined in the function will be executed, where

both classical and quantum computation is involved. The classical parts include the

pre-processing of input data, quantum circuit generating, and post-processing, where
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the quantum part indicates the circuit execution on quantum backends.

By adopting the FaaS approach and classical resources for creating a quantum func-

tion, we can seamlessly integrate multiple quantum functions together or with classical

ones to construct a service or microservice in a large application (see Figure 3.1). The

serverless and service-oriented application model is a potential approach to bring the

advantages of quantum computation to solve intractable problems of classical comput-

ing without replacing the whole system. For example, we can replace a classical random

number generation function in a finance microservices application with the quantum

counterpart to yield truly random numbers [45], which we cannot do in classical pro-

gramming. However, the application of serverless computing models to quantum ap-

plications needs to be carefully considered and adjusted, especially in the current NISQ

era, in which quantum hardware limitations can hinder quantum execution. Ultimately,

the potential benefits and challenges of the emerging quantum serverless computing

model motivate us to explore and empirically evaluate in this study.

3.4 QFaaS Architecture and Main Components

3.4.1 Software Requirements and Design Principles

The design of the QFaaS framework is guided by several key requirements and design

principles, which contribute to its benefits for streamlining service-oriented quantum

application development and help software engineers to plan, develop, and improve

their quantum software applications:

• Serverless: Quantum software engineers only need to focus on developing and

improving their functions, while the framework automatically carries out the rest

of other procedures, including the environmental setup, function deployment, se-

lecting the appropriate quantum computation system for the function execution

(backend selection), managing the function operation and scaling.

• Service-Oriented: Each quantum function can be deployed as a service, which can

be accessed through the cloud-based API gateway in multiple methods. This ap-
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proach simplifies further expansion and maintenance, drawing inspiration from

the microservices architecture and the “everything-as-a-service” (XaaS) paradigm.

Consequently, new functionalities can be easily integrated into the existing appli-

cation without disrupting other services.

• Flexibility: Users can choose their preferred quantum programming languages,

libraries, and cloud providers to avoid potential vendor lock-in situations. The

framework needs to support the current NISQ computers and quantum simula-

tors. Its architecture provides the flexibility to implement possible extensions to

support other quantum technologies as they emerge in the future.

• Seamlessness: The framework needs to support continuous integration and con-

tinuous deployment, which are two of the essential characteristics of DevOps to

continuously deliver value to end-users. Utilization of this model boosts applica-

tion development and becomes more reliable when compared with the traditional

paradigm [210].

• Reliability: The framework implementation should use the state-of-the-art soft-

ware technologies to ensure high availability, security, fault tolerance, and trust-

worthiness of the overall system. The execution results are stored in the database

for comparison purposes and to optimize the execution parameters of the quan-

tum function.

• Service Scalability: As one of the critical characteristics of the serverless model,

the quantum service is scalable and adapts to the actual user requests. However,

the scalability of current quantum devices is limited by the number of qubits, and

NISQ devices cannot execute practical-scale networking and computational in-

structions beyond small instances of a few specific problems [211]. Therefore, it

is important to note that within the context of our framework, this requirement

is manifested in the size scalability (i.e., the ability for a system to effectively ex-

pand its size as more resources or users are added) [212] of the classical resources,

wherein the quantum function is deployed. We primarily focus on horizontally

scaling in/out function deployment by adjusting the replication of function in-

stances, in response to user requests. This approach provides a practical and
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adaptable solution to handle varying workloads depending on the number of con-

current function invocations.

• Transparency: The operation workflow of the framework needs to be transparent

to both the software engineers and end-users. The information provided by the

framework is sufficient for troubleshooting, logging, and monitoring purposes,

and can be used for further investigations if needed.

3.4.2 Main Components

The architecture design of QFaaS comprises six extendable components: the QFaaS APIs

and API Gateway, the Application Deployment Layer, the Classical Cloud Layer, the

Quantum Cloud Layer, the Monitoring Layer, and the User Interface. Figure 3.2 illus-

trates the overall design, including the architecture and principal components of our

framework.

QFaaS APIs and API Gateway

We design two types of APIs that expose to the authenticated user through a secure

HTTPS connection:

• Service APIs are the set of APIs corresponding to the deployed functions. Each

function running on the classical cloud layer has a unique API endpoint accessible

to an authorized end-user. These APIs can be integrated seamlessly into existing

software workflow.

• Core APIs set is one of the most essential components in the QFaaS framework. It

comprises a set of secure REST APIs, which provide principal operations and inter-

actions among all components of the whole system. These APIs facilitate function

development, invocation, job monitoring, and interaction with the external quan-

tum providers and backend management. Core APIs also facilitate the main func-

tionalities of the QFaaS UI. We explain the detailed design and implementation of

the Core APIs in Section 3.5.1.
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Figure 3.2: Overview of QFaaS Architecture Design and Main Components

The API gateway serves as a centralized entrance where users can interact with other

components. This API gateway routes users’ requests to suitable components for pro-

cessing and delivers the result back to the users with a common data format after com-

pleting the execution.

Application Deployment Layer

This layer serves as a bridge between quantum software engineers and the cloud layers

to deploy and expose each function as a service with an API endpoint. It takes the prin-

cipal responsibility for code version control, containerizing, and deploying functions by

incorporating four key components:

• Code Repository is a Git-based platform to manage function codes with version
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control, which is essential in software development for collaboration, issue track-

ing, and further workflow automation integration.

• Function Templates and Library provides container-based quantum software en-

vironment configuration, support library, and common function templates for well-

known quantum SDKs and languages, including Qiskit, Cirq, Q#, and Braket.

We developed QFaaS Library1, a Python-based programming library that supports

essential interactions to the Core APIs and provides common pre-built data pre-

processing, and output post-processing for the function development.

• DevOps Automation employs CI/CD integration following the DevOps manner

to automate the function of deploying and updating, ensuring the continuous de-

livery of reliable quantum functions.

• Container Registry stores immutable container images of functions and environ-

mental setup for function deploying, migrating and scaling.

Classical Cloud Layer

This layer is a cluster of cloud-based classical computers (physical servers or virtual

machines), where the quantum functions are deployed and triggered. All the classical

computation tasks are executed here, including backend selection, data pre-processing,

and post-processing.

We employed Kubernetes to orchestrate all the pods (the container-based unit of Ku-

bernetes) for the deployed function across all cluster nodes. Each function will be run

on a pod and can be scaled up horizontally by replicating the original pod to serve mul-

tiple incoming requests simultaneously. Following the proposed architecture, we can

use all built-in quantum simulators of employed SDKs directly inside a pod at the Ku-

bernetes cluster. We call this kind of simulator the internal quantum simulator, while the

term external quantum simulator denotes simulators offered by quantum cloud providers.

We also deployed a NoSQL database on this layer to permanently store the processed

job result data and information of users, functions, and backends. In a production de-

1https://pypi.org/project/qfaas/
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ployment, it is recommended that the database be placed externally to ensure the high

availability for permanent data storage. Besides, the cached data for quantum circuits

can be stored at this layer.

Quantum Cloud Layer

This layer is an external part, indicating the quantum cloud providers, such as IBM

Quantum and Amazon Braket, where the quantum job can be executed in a physical

quantum backend. Quantum providers can provide either quantum simulators or ac-

tual quantum computers through their cloud services, which can be accessed from the

Classical Cloud layer. We develop the corresponding APIs in QFaaS Library and Core

APIs to interact with each external quantum cloud platform. The result processing data

from all cloud providers is standardized in a common JSON format, ensuring data con-

sistency and preventing data lock-in issues within the serverless-based platform.

Monitoring Layer

This layer incorporates monitoring techniques to check the status of other QFaaS compo-

nents, including quantum backends, quantum providers, function execution (job), and

function deployment. As the classical cloud layer employs Kubernetes as the container

orchestration, we can also seamlessly integrate additional open-source monitoring tech-

niques, such as Prometheus2, Grafana3, and Lens4 for observing other system aspects of

the classical cloud layer such as resource consumption, networks, and system logs.

User Interface

We created a user-friendly web application (QFaaS Dashboard) using React5 to interact

with the QFaaS system (examples can be found in Section 3.6). This user interface vi-

sualizes the essential functionalities of QFaaS, such as function developing, deploying,

2https://prometheus.io/
3https://grafana.com/
4https://k8slens.dev/
5https://reactjs.org/
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monitoring, and invoking; job results, quantum providers, and backends connection.

3.5 Design and Implementation

This section provides the technical design, procedures, and implementation of the QFaaS

Core APIs and quantum function development, development, invocation, and backend

selection in the QFaaS framework.

3.5.1 QFaaS Core APIs

QFaaS Core APIs take responsibility for primary functionalities in the QFaaS frame-

work. We have developed this API set using Python 3.10 with FastAPI6, a high-performance

Python-based framework supporting the Asynchronous Server Gateway Interface (ASGI)

for concurrent execution. We used the MongoDB database to store the persistent data in

JSON format. Figure 3.3 depicts the overall class diagram, with attributes and methods

of each object in QFaaS Core APIs.

Figure 3.3: Class Diagram of QFaaS Core APIs

• User: This class defines user attributes and methods to facilitate access control

and role management features. We categorized three different users: administrator,

6https://fastapi.tiangolo.com/
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software engineer, and end-user with different privileges in the system. Adminis-

trators control all components; software engineers can develop and deploy func-

tions, while end-users can only use their appropriate functions. Each active user

is assigned a unique token (using OAuth2 Bearer7), which is used for authenti-

cation, authorization, and dependency check for each interaction with the core

components of the QFaaS. This implementation enhances security for the whole

framework and provides a multiple-user environment for taking advantage of the

framework.

• Function: This class defines each function’s properties and supported methods.

Each function belongs to a software engineer (author) and its access can be granted

to a specific end user. The CRUD, invoke() and scale() methods of this object inter-

acts directly with other architectural components such as Code Repository, Con-

tainer Registry and the Classical Cloud layer to handle the function deployment,

management, and invocation.

• Job: A job in QFaaS is a computation task submitted to a quantum backend for

execution. All properties and methods of a job are defined in the Job class. Each Job

has a unique Job ID assigned by QFaaS and can be associated with a providerJobID

given by an external provider. The function invocation initializes the job object.

After finishing the execution, job results can be post-processed and stored in the

database for further retrieval.

• Provider: The provider class handles a user’s authorization to external quantum

providers, including IBM Quantum and Amazon Braket. The design of this class

ensures that each user has the specific privilege to access their quantum providers

only.

• Backend: A backend is a quantum computation node, such as a quantum simula-

tor, or a quantum computer, which takes responsibility for the quantum execution.

The Backend class defines the attributes and methods to interact with the backend

provided by the classical cloud layer or external quantum cloud layer. We also im-

7https://datatracker.ietf.org/doc/html/rfc6750
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plement the Backend Selection policy in this class for automating selecting the most

appropriate quantum backend for each quantum task execution (Section 3.5.3).

3.5.2 QFaaS Quantum Function Structure

This section describes the structure of a quantum function in the QFaaS framework for

the development process. Our framework provides a set of pre-configured function tem-

plates, each encapsulated in a Docker image with the necessary quantum software de-

velopment kit (SDK) environment, to streamline the development of quantum functions.

Each function has a single working directory, including main components following the

common pattern of the serverless platform (such as Lambda [213]). Function handler

code includes classical parts (using Python) and quantum parts. When end-users in-

voke the function, QFaaS executes the function handler and starts the computation as

defined. Handler for Qiskit, Cirq, and Braket function can be defined at handler.py

file while Q# function requires an additional Q# code at handler.qs file and then to im-

port it to the main handler.py file. The sample structure for the function handler with

classical pre-processing and post-processing is described in Code 3.1. In the function

handler code, we import qfaas library8 and all additional libraries (including compiled

binary for Q# function). Then, we define the function handling procedure (as shown in

Code 3.1) as follows:

1 import qfaas, [additional_libraries]

2

3 def handle(event, context):

4 # 1. Pre-processing (optional)

5 data = pre_process(event.data)

6 # 2. Generate Quantum Circuit

7 qc = generate_circuit(data.input)

8 # 3. Verify/select quantum backend

9 backend = Backend(data, qc)

10 # 4. Submit job for execution

11 job = backend.submit_job(qc)

12 # 5. Post-process (optional)

13 result = post_process(job.result)

8https://pypi.org/project/qfaas/
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14 return result

Code 3.1: Sample structure of a hybrid quantum-classical function

1. Input Pre-processing: Users can optionally define the pre-processing for input

data handling in event object. The event is JSON-based data that contains user in-

put raw data, followed by the QFaaS JSON format, while context provides HTTP

methods (such as GET/POST), HTTP headers, and other properties, which are op-

tional for the request. This pre-processing is executed on classical computers and

the processed data is used for the circuit generation process.

2. Quantum Circuit Generating and Compilation: The engineer can define quan-

tum circuit code that takes input parameters as input data. Based on the given

parameters, an appropriate quantum circuit is built. As aforementioned in sec-

tion 3.3.2, each quantum function is a single-purpose and event-triggered quantum

program to solve a specific problem that produces the output based on the user’s

input. To ensure the versatility of the quantum function, the quantum function

code needs to be designed to generate the quantum circuit dynamically based on

the user’s input (so we called variable circuits for short). Otherwise, if the quantum

circuit is fixed regardless of different input data, the same circuit will be generated

every time the quantum function is invoked. The characteristic of the quantum

circuit is used for the backend selection in the next stage. After that, the initial

circuit may need to be transpiled to be compatible with the supported gates and

qubit topology of the selected backend. The conversion is also required in the case

of the quantum cross-platform execution model.

3. Quantum Backend Selection: QFaaS provides a built-in quantum backend veri-

fication and selection in Backend class (detailed implementation in Section 3.5.3)

to ensure the most appropriate backend is selected for the execution. It is worth

noting that our proposed backend selection strategy is a best-effort approach as

some quantum jobs take longer to execute than others, and no quantum provider

discloses any information about the pending jobs’ characteristics at the moment.

However, our framework also allows users to define their customized backend
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selection strategy, which paves the way for more advanced techniques to be de-

signed when more information is available in the future.

4. Quantum Job Submission and Execution: We also provide the submit_jobmethod

in the Backend class to perform the job submission to the selected quantum back-

end in the previous step. This method involves the quantum circuit transpilation

to ensure the submitted circuit is compatible with all supported gates of the quan-

tum backend. The outcome of this method is a job with a unique ID for result

retrieval and further inspection. As today’s quantum computers are NISQ devices

[15], each quantum execution should be run many times (shots) to mitigate quan-

tum errors. Besides, due to the limited number of available quantum computers,

a quantum task (job) needs to be queued at the cloud provider (from seconds to

hours) before execution. After the quantum computation is finished, the raw result

is retrieved from the provider to the function handler for the post-processing step.

5. Output Post-Processing: Users can define the customized post-processing method

for further analyzing the raw result from the quantum computer before generating

the final result for end-users. We provided several sample post-processing meth-

ods based on result counts, which will be discussed in section 3.6.

After finishing all the processing, the function handler returns the result to end-users,

including the HTTP Status Code and response data in common JSON format, regard-

less of the difference of targeted backends. The job result is also kept in the MongoDB

database for further retrieval.

3.5.3 Quantum Backend Selection

Quantum Backend Selection is an essential procedure in the function invocation process

to determine which quantum backend is suitable for the quantum circuit execution. In

the initial version of QFaaS, we have incorporated a scoring-based policy, as outlined

in Algorithm 1. This policy empowers users to prioritize their selection of the quantum

backend based on factors such as result precision or the speed of function execution.
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Algorithm 1: QFaaS Quantum Backend Selection
Input : qc: quantum circuit, sdk: quantum SDK,

a: autoselect option, t: preferred backend type,
bName: backend name (for manual selection),
γ: list of all parameter weights, u: current user

Output: be: quantum backend instance
1 procedure BackendSelection:
2 be← null
3 q← qc.getNumQubit()
4 if t is internal then
5 be← getInternalSimulator (sdk, q, u)
6 else
7 if a is True then
8 # Auto Backend Selection
9 Pre-select backends and get all transpiled qc

10 B ← getBackendList (u)
11 B ← preSelect (B, q, sdk, t)
12 T ← getTranspile (qc, B)
13 Scoring all backend in B
14 for b ∈ B do
15 τ ← get transpiled circuit for b (τ ∈ T )
16 Normalize depth, QV, workload & CLOPS
17 v← norm (getQV(b), B)
18 d← norm (getDepth(τ), T )
19 c← norm (getCLOPS(b), B)
20 w← norm (getWorkload(b), B)
21 Compute precision, speed & overall score
22 p← vγv + dγd
23 s← wγw + cγc
24 ϵ← pγp + sγs
25 Update all backend scores
26 B ← updateScore (b, ϵ)
27 end for
28 be← getMaxScore (B)
29 else
30 # Manual Backend Selection
31 be← verifyBackend (bName, u, qc)
32 end if
33 end if
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In our backend selection logic, users can specify their preferred backend type as

internal to use the internal quantum simulator for testing and prototyping purposes.

They can also manually select a specific quantum backend when invoking a function.

Otherwise, the QFaaS framework will process the automatic backend selection strategy

as follows:

1. Backend Pre-selection and Circuit Transpilation:

QFaaS filters a list of backends based on key requirements to execute the quan-

tum task. These requirements include (1) scale of the quantum backend (i.e., the

number of qubits must be sufficient), (2) availability (i.e., the quantum backend

must be operational), and (3) and compatibility (i.e., the quantum backend must

support the quantum SDKs used by quantum circuit). After pre-selecting the list

of appropriate quantum backends (B), the circuit will be transpiled to adapt to all

quantum backends in B, and the characteristics of each corresponding transpiled

circuit can be used for determining the most suitable quantum backend.

2. Backend Scoring based on execution priority

Considering the current state of NISQ devices and the quantum computing ser-

vice model of quantum providers, we determine two priorities to select a quantum

backend when invoking a function, i.e., precision and speed.

(a) The precision of the execution results depends on the quality of qubits in a quan-

tum system, which can be determined by the quantum volume (QV, denoted by v).

Quantum volume [29] is a holistic metric that indicates how well a quantum circuit

can be executed in a quantum system, measured by the largest random square cir-

cuit that can be successfully run. We also consider the depth (denoted by d) of the

circuit as a shallower circuit has a higher chance of being executed faithfully inside

a quantum system [32, 214]. In other words, a finer quantum backend for generat-

ing better result precision has a higher quantum volume and requires a quantum

circuit to be transpiled with a smaller circuit depth. For equally weighting two

metrics with different scales in our backend scoring algorithm, we normalize v

and d of the i-th backend in B to be between 0 and 1 (using min-max normaliza-

tion method) by the following formulas:
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v̄i =
vi −min(v)

max(v)−min(v)
and d̄i =

max (d)− di

max (d)−min (d)
where v̄i and d̄i are normalized values of quantum volume and transpiled circuit

depth.

The precision score (pi) of the i-th quantum backend can be calculated by pi =

v̄iγv + d̄iγd where γv + γd = 1 and γv, γd are the weight of quantum volume and

circuit depth, respectively.

(b) The speed of execution relies on how fast a quantum system can execute quan-

tum circuits, which can be measured by Circuit Layer Operations Per Second [32]

(CLOPS, denoted by c). We also consider the current workload (i.e., the total num-

ber of pending jobs to be executed, denoted by w) of a quantum backend to deter-

mine the speed score, as the waiting time can be typically shorter. Similar to the

calculation of precision score, we normalize c and w of the i-th backend in B to be

between 0 and 1 by the following formulas:

c̄i =
ci −min(c)

max(c)−min(c)
and w̄i =

max (w)− wi

max (w)−min (w)
where c̄i and w̄i are normalized values of CLOPS and current workload of the

quantum backend.

The speed score (s) of an i-th quantum backend can be determined by si = c̄iγc +

w̄iγw, where γc + γw = 1; γc and γw are the weight of CLOPS and workload of the

quantum backend, respectively.

After scoring the precision (pi) and speed (si), we calculate the overall score (ϵi) of

the i-th backend by using the following formula: ϵi = piγp + siγs where γp + γs = 1;

γp and γs are the weight of precision and speed priority, respectively. This approach

can dynamically select the most suitable quantum backend based on user priority, the

characteristics of current function invocation, and the status of all available quantum

backends. It is important to note that although all weight parameters can be adjusted,

users can only need to adjust two primary weights γp and γs based on their priority on

either the precision of the execution result or how fast the quantum circuit will be exe-

cuted. For example, if a user prioritizes the precision of the result rather than the speed,

they can set γp close to 1, in which the quantum can be queued in a specific backend

(which can be executed with the highest accuracy) even if the availability of the least
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busy or highest quantum backend is not the best one. Otherwise, the default value of all

weight parameters can be set to 0.5 to maintain the balanced contribution of all factors

to the backend selection decision. To validate the operation of this policy, we provide

examples of backend selection for three consecutive quantum function invocations in

Section 3.6.3.

It is important to note that we have already utilized the most accessible circuit infor-

mation and key benchmarking metrics of quantum computers (qubit number, quantum

volume, CLOPS) [32] for implementing the backend selection strategy. Due to the lim-

itations to accessing the public information of pending jobs at the other cloud provider

(e.g., Amazon Braket through Strangeworks), this backend selection procedure is only

supported for IBM Quantum providers. Supporting the backend selection for Amazon

Braket and other quantum cloud vendors and considering other aspects, such as costs,

is our future plan.

3.5.4 Quantum Function Cold Start Mitigation

Cold start is a typical problem of serverless computing [206]. It is referred to when the

framework needs to initialize a new container instance and prepare the function exe-

cution when handling a new invocation [33, 215]. This latency is even more significant

in the context of quantum functions, as each function typically requires a specific envi-

ronment setup and circuit compilation optimization to adapt to the targeted quantum

backend.

Figure 3.4: Quantum function cold start latency process during the invocation

The quantum function cold start latency can be illustrated in Figure 3.4. If there is

no container of a specific function is available at the time of its invocation, a new in-
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stance needs to be initialized, which can cause a notable delay. After setting up the

environment for the quantum SDK, a corresponding quantum circuit needs to be gener-

ated and compiled. As most available quantum computers do not have fully connected

qubit topology and do not support all quantum gates, quantum circuit transpilation is

typically required to tailor it to specific qubit topology and native gate set of targeted

quantum backend. This process can also result in substantial delays in the quantum

circuit compilation phase before its execution. Thus, mitigating cold start latency in a

quantum serverless platform, particularly in the NISQ era, is unavoidably essential.

Figure 3.5: QFaaS Transpilation Caching approach for mitigating the cold start latency
of container preparation and quantum circuit compilation

Focusing on the nature of current quantum execution, we design an agile and practi-

cal strategy to mitigate the cold start issue and enhance quantum function execution as

a complement to the QFaaS framework (see Figure 3.5). To reduce the container prepa-

ration latency, we keep the function’s container “warm” (i.e., keep at least one instance

up and running) after its creation to avoid the long container initialization latency. To

mitigate the quantum circuit compilation latency, we utilize the cache-based approach,

which is a popular strategy in classical serverless computing [215]. To enhance the

reusability and flexibility of cached data, we use Quantum Assembly Language (QASM)

to store a copy of the pre-transpiled quantum circuits. Open QASM is a lightweight as-
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sembly language to represent universal quantum circuits [208], which can be imported

to or generated from different quantum SDKs (e.g., Qiskit). During the circuit compila-

tion, QFaaS will check the availability of the corresponding transpiled circuit and load

it into the current function instance for execution. Otherwise, the quantum circuit has

to be transpiled, but a copy of the transpiled circuit will be stored for further reuse. Be-

sides, during the idle time period of the function, we can proactively pre-transpile quan-

tum circuits of that function to optimize with the qubit topology and native gate set of

available quantum backends. Another source to enrich the transpiled QASM files is to

integrate the external quantum circuit dataset, such as MQTBench [1], which comprises

over 70,000 quantum circuits in QASM format of different applications. As Open QASM

is a lightweight and platform-agnostic quantum assembly language [208], this caching

approach also brings its potential to future expansion of QFaaS to support other quan-

tum computing systems. Also, the circuit loading time from a pre-transpiled QASM file

is by far faster than transpile the circuit; this approach can significantly reduce the over-

head for the function repeated execution, hence reducing the cold start latency for the

quantum function execution. The empirical result to validate this strategy can be found

in Section 3.6.4.

3.5.5 QFaaS Sample Operation Workflows

This section provides two sample operation workflows, including developing/deploy-

ing and invoking quantum functions using the QFaaS framework.

Developing and deploying quantum functions

QFaaS simplifies the function development process for quantum software engineers.

They can utilize the following workflows to create new functions, update existing func-

tions, and troubleshoot issues during the development process. Figure 3.6a depicts the

function development process, which consists of seven key steps as follows:

1. Create a new function by using the QFaaS UI. The engineers specify which quan-

tum SDK will be used (Qiskit, Cirq, Q#, or Braket), include the required library,

and write their quantum function code.
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(a) Function development and deployment for Quantum Software Engineers.
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(b) Function invocation for End-users.

Figure 3.6: Overview of two main operation workflows in QFaaS: (a) Function develop-
ment and deployment, (b) Function invocation.

2. Push function codes to the Application Deployment layer through the QFaaS API

Gateway.

After these steps, QFaaS automatically takes responsibility for the rest of the deployment

procedure by performing the following steps:

3. The API gateway forwards the function code and pushes it to the Code Repository.

4. After the function code is pushed, it triggers the Automation components to start

the continuous deployment.

5. Pull the function template and combine it with function code to build up and con-

tainerize it into a Docker image. Then, those images will be pushed to a Container

Registry to be stored for further utilization (such as migrating or scaling in a func-

tion).
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6. Deploy the function as a container-based service into the Kubernetes cluster at the

classical cloud layer.

7. Expose the service API URL endpoint corresponding to the deployed function.

After this stage, the function serves as a service and is ready for invoking from

end-users.

During the development stage of the quantum function, engineers can test the deployed

services with different backends several times and analyze the results, which are stored

in the database for comparison and further improve function configurations (e.g., shots)

to achieve optimal results. QFaaS also monitors the operation of quantum functions and

performs the cold start mitigation strategy as described in Section 3.5.4

Invoking quantum functions

The users can invoke the deployed function through the QFaaS API gateway. Figure 3.6b

demonstrates the overall workflow for the function invocation, including seven steps as

follows:

1. Sending request: In the requested data, the user can clarify their preferred backend

or let the framework automatically select the suitable backend, the result retrieval

method, and the number of shots they want to repeat the quantum task.

After receiving the user’s requested data, QFaaS automatically accomplishes the rest of the

process.

2. Routing the requests: The API Gateway routes user requests to appropriate available

functions. In the event that a function is not yet initiated or undergoing scaling in

to zero, QFaaS takes charge of initializing and activating the function to handle the

incoming user request. This scenario is anointed as a cold start in serverless jargon.

3. Input Pre-Processing and Quantum Circuit Compilation: The user’s input data un-

dergoes pre-processing at the classical computation node. Then, a corresponding

quantum circuit is generated based on the provided input.
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4. Backend Selection: An appropriate backend is selected based on user requests and

availability at the quantum provider, using our decision policy (Algorithm 1).

5. Executing the quantum job: The quantum circuit is transpiled and dispatched to

the chosen backend, which can be an internal quantum simulator (6a), an external

quantum simulator (6b), or a quantum computer (6c). Once the backend com-

pletes the execution, the outcome is transmitted back to the function handler for

post-processing on classical resources in the same invocation. If users want to

check the response later or when the waiting time at the provider is longer than a

predefined timeout (1 minute by default), the function will send back the QFaaS

Job ID and backend information after successfully submitting the quantum circuit

to the selected backend. This delayed scenario is expected to happen often when

submitting a job to an external quantum cloud provider during peak hours due to

the current shared nature of available quantum resources.

6. Output Post-Processing: The outcome from quantum backends could be analyzed

and post-processed before being sent back to end-users and stored in the database.

7. Returning the results: Following the previous step, the final result is returned to

end-users through the API Gateway, following the same approach as when they

initially submitted the request. End-users can obtain the final result data and in-

formation regarding the quantum backend device utilized during the quantum

execution.

3.6 QFaaS Example of Operation and Evaluation

This section provides explanatory examples of the operation and performance evalua-

tion of QFaaS in function deployment, resource consumption, and scalability. Besides,

we validate the proposed quantum backend selection and cold start mitigation strat-

egy with various quantum algorithms. We also use QFaaS to evaluate the performance

of popular simulators and computers to give practical insights into the limitations and

challenges of quantum software engineering in the NISQ era (see Appendix B).
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3.6.1 Environment Setup

We deployed the core components of QFaaS on a set of four virtual machines (VMs)

offered by the Melbourne Research Cloud9. We set up the Kubernetes cluster using mi-

crok8s10 with containerd as the underlying containerization technology on a three-VM

cloud cluster (one master node with 4 vCPU, 16GB RAM, and two worker nodes with

8vCPU, 32GB RAM each). The function deployment component is built on top of Open-

FaaS [216]. The QFaaS Code Repository and Automation components are deployed on

the last VM (4 vCPU, 16GB RAM) with Gitlab as the underlying Git-based platform. For

the quantum computation, we have tested the Qiskit functions with the built-in QASM

simulator on the classical computers at the classical cloud layer and quantum backends

provided by IBM Quantum [16]. For Q# and Cirq functions, we used their built-in quan-

tum simulators and executed them on the classical cloud layer. For Braket functions, we

used their local simulator and external backends at Amazon Braket through the support

of Strangeworks Backstage program [150]. The circuits and transplied QASM files for

other quantum algorithms in the backend selection and cold start mitigation validation

are adopted from the MQT Bench dataset [1].

3.6.2 Example of Operation and Performance Evaluation

To demonstrate the practical operation of QFaaS, we utilize an explanatory quantum

circuit to generate truly random numbers, utilizing the superposition characteristic of

qubits. It is evident that random numbers play an essential role in cryptography, fi-

nances, and many other fundamental scientific fields [217]. By leveraging quantum

principles, Quantum Random Number Generation (QRNG) is a reliable way to provide

true randomness, which cannot be achieved by classical computers [44]

We deployed the QRNG circuits in four popular quantum SDKs (Qiskit, Cirq, Q#,

and Braket). The main idea of this circuit is to leverage the Hadamard gate to create the

superposition state of each qubit and then measure to get a random value (0 or 1) with

the same possibility (50%). To validate the hybrid quantum-classical integration feature,

9https://cloud.unimelb.edu.au/
10https://microk8s.io/
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we implemented sample post-processing by analyzing all possible outcomes when the

function is executed multiple times (shots) and returning the most frequent result to the

user.

Figure 3.7: Sample QRNG Function Invocation Result on QFaaS Dashboard interface
using Amazon Braket backend (aws.SV1)

Table 3.1: QFaaS functions deploying and re-deploying (updating) time

Function Function Image Size
(MB)

1st Building time
(second)

1st Deploying time
(second)

Re-building time
(second)

Re-Deploying time
(second)

Qiskit QRNG 755.85 180.62 262 8.35 31
Cirq QRNG 561.19 105.57 168 8.53 30
Braket QRNG 1010.07 354.04 496 6.36 30
Q# QRNG 2200 267.75 466 5.77 34

The request for invoking the QRNG function using all supported SDKs and lan-

guages follows the QFaaS format. Upon completion of the processing, the sample re-

sponse, as illustrated in Figure 3.7, indicates that a 10-qubit random number, specifi-

cally 367 (0101101111 in binary), has been generated. This particular random number

occurs most frequently, appearing twice, during the execution of the function using the

Amazon Braket Simulator (aws.SV1).
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Table 3.2: QFaaS function resource consumption during the idle time and busy time
with 1 and 10 concurrent users

Function
Idle time 1 user 10 concurrent users
CPU (vCore) RAM (MB) CPU (vCore) RAM (MB) CPU (vCore) RAM (MB)

Qiskit QRNG 0.001 87.9 0.052 87.93 0.082 88.04
Cirq QRNG 0.001 124.56 0.024 128.605 0.053 129.07
Braket QRNG 0.001 96.063 0.042 99.586 0.078 99.96
Q# QRNG 0.037 688.77 0.056 735.16 - -

Function Deployment Evaluation

In this evaluation, we measured the image size, average image building time, and the

total deploying time in the first and later update at the Application Deployment layer

(using Gitlab) to provide insight into QFaaS system performance. Table 3.1 records the

detailed result of this evaluation.

As all function’s essential components are compressed in the container images, its

size is varied from 561 MB (Cirq) up to 2.2 GB (QSharp). The total deploying time

includes the function image-building time and image-deploying time, which is below

ten minutes for creating the function deployments the first time. Deploying the Cirq

QRNG took the shortest time (below 3 minutes) whereas Braket and Q# functions re-

quired 7-8 minutes to complete. However, when we update the function handler code,

the re-deploying times are significantly faster (around 30 seconds) for all functions. It is

mainly because a container image comprises multiple layers and the updated image can

inherit multiple layers from the previous images. We also utilized caching technique to

optimize the continuous integration and deployment process. These function deploying

and updating times are reasonable in practice as the software engineer can focus on cod-

ing and offload the configuration and deployment to the Application Deployment layer.

The corresponding service endpoint of the quantum function is then ready for invok-

ing after several minutes in the first deployment and below a minute for the following

update.

Function Resource Consumption

We monitored the resource consumption, including the CPU and memory (RAM) used

by the pod associated with the deployed function in QFaaS. We measured the aver-
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age value of maximum CPU and RAM usage, provided by Kubernetes Dashboard and

K8sLens 611 monitoring tool. In this evaluation, we kept a single pod for each func-

tion and considered 3 scenarios: the idle time (i.e., keep the pod running without any

invocation), 1 user, and 10 concurrent users.

As the results are shown in Table 3.2, the required resource to keep Qiskit, Cirq,

and Braket functions running are kept low, which are 0.001 CPU vCore and roughly

100 MB of memory. In contrast, the Q# function requires more additional resources to

keep its pod running, even during idle time. Then, we used JMeter 512 to continually

generate 1000 requests to obtain 10-qubit random numbers (using the internal quantum

simulators) with 100 shots for each invocation. The maximum CPU and RAM used are

slightly increased in cases of Qiskit, Cirq, and Braket while the corresponding increment

is higher with the Q# function. We also note that the figures for the Q# function in the

last columns are disregarded as its pod frequently crashed when we constantly send

requests from 10 concurrent connections. Therefore, we suggest using Qiskit, Cirq, or

Braket for prototyping a quantum function to achieve better performance and maintain

proper resource consumption.

Table 3.3: Backend Selection for Job 1 (Deutsch-Jozsa’s algorithm - using 5 qubits.
ibmq kolkata backend is chosen with the highest ϵ = 0.61.

Backend Qubits QV (v) v̄ QC depth (d) d̄ CLOPS (c) c̄ Workload (w) w̄ p s ϵ

ibm washington 127 64 0.33 20 0 850 0 2 1 0.17 0.5 0.34
ibmq kolkata 27 128 1 19 0.17 2000 0.56 40 0.68 0.59 0.62 0.61
ibm hanoi 27 64 0.33 17 0.5 2300 0.71 88 0.27 0.42 0.49 0.46
ibmq guadalupe 16 32 0 14 1 2400 0.76 103 0.14 0.5 0.45 0.48
ibm perth 7 32 0 15 0.83 2900 1 120 0 0.42 0.5 0.46

Table 3.4: Backend Selection for Job 2 (GHZ State - using 10 qubits). ibmq hanoi backend
is chosen with the highest ϵ = 0.8.

Backend Qubits QV (v) v̄ QC depth (d) d̄ CLOPS (c) c̄ Workload (w) w̄ p s ϵ

ibm washington 127 64 0.33 13 1 850 0 5 1 0.67 0.5 0.59
ibmq kolkata 27 128 1 13 1 2000 0.74 212 0 1 0.37 0.69
ibm hanoi 27 64 0.33 13 1 2300 0.94 22 0.92 0.67 0.93 0.8
ibmq guadalupe 16 32 0 13 1 2400 1 103 0.53 0.5 0.77 0.64
ibm perth 7 - - - - - - - - - - -

11https://k8slens.dev/
12https://jmeter.apache.org/
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Table 3.5: Backend Selection for Job 3 (Shor’s algorithm to factorize number 9 - using 18
qubits). ibmq kolkata backend is chosen with the highest ϵ = 0.7.

Backend Qubits QV (v) v̄ QC depth (d) d̄ CLOPS (c) c̄ Workload (w) w̄ p s ϵ

ibm washington 127 64 0.33 38381 0 850 0 4 1 0.17 0.5 0.34
ibmq kolkata 27 128 1 37776 1 2000 0.79 130 0 1 0.4 0.7
ibm hanoi 27 64 0.33 38190 0.32 2300 1 57 0.58 0.33 0.79 0.56
ibmq guadalupe 16 - - - - - - - - - - -
ibm perth 7 - - - - - - - - - - -

Function Scalability Evaluation

As the underlying orchestration technique is based on Kubernetes, we can enable the

auto-scaling feature to scale out the function deployment horizontally (i.e., increase the

number of function replications), dealing with the scenario when the request workload

grows significantly from multiple concurrent connections. To evaluate the effectiveness

of different scalability levels, we perform a set of evaluations on the 10-qubit Qiskit

QRNG function. In this evaluation, we increase N - the number of concurrent users

from 8 to 64, using JMeter 5. In each case, we consider a set of three different scenarios:

non-scale (1 pod/function), scale out to N/2 pods, and scale out to N pods (we note that

the number of pods is fixed for evaluation purposes only). For example, suppose there

are 64 users (N) invoking the function simultaneously; we will conduct three test cases:

1 pod, 32 pods (N/2), and 64 pods (N), and record the average response time and the

standard deviation.

Figure 3.8 demonstrates the result of our benchmarking. Overall, it is clear that if

the function is non-scalable, the average response times for high-demand scenarios sig-

nificantly increase. The previous section shows that the average response time for the

10-qubit Qiskit QRNG function is 81 ms. This figure jumps dramatically, up to 1703 ms,

if 64 users use the function simultaneously. However, thanks to the containerization

approach in our framework, we can quickly scale out deployment in seconds to ensure

the response time is maintained. We can see that the average response time fluctuates

between 87 to 148 ms if we scale out to N pods or from 102 to 180 ms when the number

of pods is N/2.

It is important to notice that by scaling a quantum function, our approach is to repli-

cate its classical instance deployment (i.e., Kubernetes pod), which is comparable to any

existing serverless system. Its main objective is to handle concurrent requests from mul-
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Figure 3.8: Scalability evaluation on 10-qubit Qiskit QRNG function.

tiple connections efficiently by reducing total response time. As shown in Figure 3.8,

this scaling approach shows significant performance improvement in the case of using

internal quantum simulators (for function testing or prototyping purposes) as the corre-

sponding quantum simulator is incorporated into each function instance.

This scaling approach has no impact on the general performance in a special situation

when all concurrent users manually select the same quantum backend for execution, as

all quantum circuits will be forwarded to the same backend. However, this limitation

can be addressed by designing an automatic backend selection algorithm based on the

availability of quantum resources at the provider as our proposed algorithm (see Sec-

tion 3.5.3). This way, each time the new instance of the same function is triggered, it

will execute the backend selection individually to determine the best-suited quantum

backend for execution without overflowing the same quantum backends. Considering

the limitations of NISQ devices and available information about quantum jobs provided

by the quantum cloud vendor, our scaling and backend selection strategy can still offer

a best-effort and viable approach to facilitate the service-oriented quantum application
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requirements. We have planned to advance these techniques in future releases of QFaaS

when more information about waiting jobs is publicly accessible from the provider.

3.6.3 QFaaS Backend Selection Validation

To illustrate and validate the operation of the proposed Backend Selection policy, we

present a case involving three invocations of different quantum functions (Deutsch-

Jozsa’s algorithm [191] using 5 qubits, the GHZ state [218] using 10 qubits, and Shor’s

algorithm[2] using 18 qubits) that need to be executed on the most suitable quantum

backend. We assign equal weight to all factors, with γ = 0.5, thereby ensuring a bal-

anced contribution of all aspects (including quantum volume, circuit depth, CLOPS,

and workload) to the final backend decision. It is important to note that users can adjust

these weight parameters according to their preferences, prioritizing either precision or

execution speed. We assume that five quantum backends are available for the backend

selection, each supporting a different number of qubits ranging from 7 to 127. Quantum

volume and CLOPS are fixed values associated with each quantum backend, sourced

from IBM Quantum [16], while the quantum circuit depth and workload are variable.

Therefore, the quantum backend can be dynamically selected based on the current quan-

tum circuits to be executed and the status of all available quantum backends (once per

function invocation). Table 3.3 illustrates the backend selection process for the first quan-

tum job. While the ibm washington backend has the largest number of qubits and is less

busy, its quantum volume and CLOPS are significantly lower compared to other 27-

qubit quantum computers. Considering all the factors, the ibm kolkata backend is chosen

as it has a higher chance of achieving both higher precision and faster execution. For the

second quantum job (see Table 3.4), only four backends with more than 10 qubits are

considered. Since all the transpiled quantum circuits have the same depth, the depth

scores are normalized to 1. The ibm hanoi backend is eventually selected as it has the

highest score of 0.8. Lastly, the third quantum job involves Shor’s algorithm to factorize

9, which requires 18 qubits and a significant number of layers in the transpiled circuit

(Table 3.5). Only three backends meet the key requirement for the number of qubits, and

among them, the ibmq kolkata backend with the highest score is chosen.
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It is also essential to highlight that the backend selection policy presented here is an ap-

proximation approach, as certain metrics, such as the workload of a quantum backend,

can be tricky. For example, a backend with a smaller number of pending jobs does not

necessarily guarantee faster execution, as those pending jobs could be large tasks requir-

ing a longer processing time. However, users have the flexibility to disregard or assign a

lower priority (close to 0) to this metric when determining the speed score of a backend.

In our future plans for advancing the QFaaS framework, we aim to incorporate more ad-

vanced techniques, such as machine learning, which automatically adjust these metrics

to enhance the backend selection process. This will further refine the effectiveness of the

policy, offering improved decision-making capabilities within the QFaaS framework.

3.6.4 QFaaS Cold Start Mitigation Evaluation

We evaluate the cold start mitigation strategy with Grover’s algorithm to diverse the use

cases of QFaaS. Grover’s algorithm [3] is a quantum search algorithm that provides a

quadratic speedup over classical counterparts. Its complexity grows with the number of

qubits, which in turn affects the depth of the quantum circuit and the qubit connectivity.

We deploy different variations of Grover’s algorithm from 2 qubits to 7 qubits, using

the quantum circuits and transpiled QASM files of the MQT Bench dataset [1] (no ancilla

qubit version, transpilation optimization level 3 to IBM Quantum 27-qubit quantum

computers). We measure the average start-up latency from the function invocation until

the function is ready for the quantum execution (i.e., finish the circuit compilation and

transpilation) with the results as shown in Figure 3.9.

It is obvious that our transpilation caching approach (warm start with caching) sig-

nificantly reduces the latency compared to both the cold start and the warm start with-

out caching scenarios. For example, in the Grover-7 function (7 qubits), the cold start

latency is around 15s, the warm start without transpilation caching is around 8s, while

the QFaaS transpilation caching approach brings it down to under 0.628s, demonstrat-

ing a substantial improvement in execution preparation time. This pattern of reduction

holds consistently across all evaluated Grover-n functions, with the caching approach

offering a significant decrease in function preparation latency. This evaluation suggests
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Figure 3.9: Quantum function cold start latency mitigation evaluation with Grover-n
function, where n is the number of qubits. Grover’s algorithm circuits and transpiled
QASM files adopted from the MQT Bench dataset [1], transpilation optimization level 3
to IBM Quantum 27-qubit devices

that the QFaaS’s transpilation caching strategy can effectively handle the classical cold

start problem for quantum function execution, thereby enhancing the system’s respon-

siveness and performance for end-users.

3.6.5 Industry Use Cases of QFaaS

It is imperative for industries to start investing in quantum computing services to stay

competitive in the cloud-based computing market. QFaaS can serve as a proof-of-concept

case study and reference system for further practical development. For example, the

company Citynow Asia in Japan [37] has already started using QFaaS to develop their

quantum serverless platform (QuaO). We expect to see growing interest in quantum

serverless computing and the adoption of QFaaS in the future.
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3.7 Discussion and Lessons Learned

This section presents key lessons learned regarding both the opportunities and limita-

tions of the QFaaS framework, providing a roadmap for future advancements in QFaaS

and the broader quantum serverless domain. Throughout the empirical development

and rigorous validation of our QFaaS framework, we have gained pivotal insights into

the prospects of the serverless approach to quantum computing, including:

• L1: Serverless computing holds great potential to accelerate quantum software develop-

ment.

From the software developers’ perspective, serverless approaches can help to ob-

viate the necessity for quantum software environment setup, service deployment,

and quantum infrastructure configuration, enabling them to concentrate on appli-

cation development and experimentation without worrying about the underlying

system. Quantum functions can be developed and deployed in a manner analo-

gous to classical functions, ensuring seamless integration into existing application

workflows. For quantum cloud providers, serverless models can provide an ef-

ficient, cost-effective means for allocating resources, optimizing utilization, and

reducing idle time. By effectively implementing serverless models and offering a

competitive pay-per-use cost model, providers can enhance user engagement and

encourage long-term commitment to their services.

• L2: The state-of-the-art software techniques and workflows can be effectively leveraged to

expedite the quantum serverless paradigm.

Our work not only theorizes but also empirically demonstrates the adaptation of

the DevOps methodology and techniques within the QFaaS framework, such as

containerization, continuous integration, and continuous deployment. The devel-

opment process of a quantum function can further be split into multiple stages.

Quantum simulators can be used in the initial prototyping and testing phase, while

quantum computers can be used later on during the production stage.

• L3: The hybrid architecture of QFaaS represents one of the adaptive and practical ap-

proaches to facilitate quantum serverless systems, reflecting the current reliance on quan-
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tum execution on classical runtimes.

This architecture highlights the crucial cooperation between classical and quantum

computation resources. In this setup, the classical counterpart acts as the runtime

server, responsible for storing and compiling the quantum code prior to its exe-

cution on the designated quantum computer. The abstraction for decomposing a

complex application into multiple smaller quantum functions adapts to the NISQ

devices. The development and deployment of quantum functions are simplified

and streamlined by the employment of DevOps techniques. The quantum func-

tion performance can also be optimized based on the needs of users thanks to the

lightweight yet adaptive backend selection strategy.

Despite the promising potential of the quantum serverless approach, the current state of

quantum hardware and software presents several significant challenges. These serve as

crucial lessons learned for further exploration in our work:

• L4: Current NISQ hardware is expensive, unreliable, and constrained, making it signifi-

cantly challenging to incorporate the quantum serverless paradigm into production envi-

ronments.

The intrinsic noise in these devices poses substantial challenges to the reliability

and accuracy of quantum operations, where techniques such as quantum error cor-

rection and mitigation can be employed. Furthermore, the execution of tasks on

real quantum devices is often associated with long queuing times and inconsistent

execution durations, making them less suitable for time-sensitive and real-time

applications. Throughout our empirical study with QFaaS, even the execution of

Shor’s algorithms requires minutes on current platforms, which is unanticipated

for a common serverless execution. However, the rapid advances in quantum

hardware in recent years hold promise for addressing this problem in the near

future.

• L5: Quantum resources cannot be scaled in the same manner as their classical counter-

parts.

Contrary to the classical domain, where serverless offers clear scalability and re-

source management benefits, the quantum realm introduces unique challenges.
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The scaling constraint of quantum hardware underscores the need for unique ap-

proaches to resource management in quantum serverless architectures. Our re-

search recognizes that the advantages seen in classical serverless computing may

not translate directly to quantum computing without significant adaptations and

optimizations, specifically concerning the scalability of quantum resources. Tech-

niques such as virtualization and containerization for quantum resources are po-

tential directions to improve the utilization and scalability of quantum computing

resources in the future.

• L6: The quantum serverless model is still in its early stages, and there are numerous open

problems that require extensive research and attention.

The application of serverless computing for quantum applications is still an emerg-

ing area where more knowledge is needed to understand the full extent of its

suitability and benefits. A serverless approach may introduce challenges for non-

trivial quantum applications that require iterative adjustment and optimization,

such as quantum machine learning. Besides, the nature of current NISQ devices

can also limit the potential of a quantum serverless approach. Despite this, the

serverless approach has gained prominence due to its ability to reduce costs, im-

prove scalability, and eliminate the need for hardware-side management, which

can be particularly beneficial for future quantum software development. Indeed,

quantum vendors, such as IBM Quantum, have placed quantum serverless as their

key priority in the development roadmap [114]. There are numerous open prob-

lems that require further extensive research and attention to exploit the potential of

a quantum serverless approach. Key areas that necessitate additional exploration

include circuit cutting, optimizing the orchestration of hybrid quantum-classical

tasks, circuit transpilation caching, reducing quantum cold start, and develop-

ing adaptive backend selection mechanisms. Resolving these challenges will play

a critical role in facilitating the widespread adoption of the quantum serverless

paradigm in the near future.
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3.8 Related Work

This section discusses the related work in the context of frameworks for developing

service-oriented quantum software. To the best of our knowledge, QFaaS can be consid-

ered one of the pioneers in serverless-based function-as-a-service frameworks for quan-

tum computing. Table 3.6 summarizes the difference between QFaaS and related work

in the context of their various capabilities.

It is important to note that all related frameworks [22, 219], empirical studies [108,

221] and minimum viable product (MVP) [222] designs did not provide an open-source

or detailed description for reproducible purposes. Besides, two other SDKs [201, 220]

are related but their classification is not a quantum serverless framework. Therefore,

we can only use the feature information reported in these studies to compare with our

framework capabilities for reference purposes but cannot fully validate the features of

related work in practice.

Existing quantum software platforms lack various features to provide a universal

environment for developing service-oriented quantum applications. Hevia et al. pro-

posed QuantumPath (QPath) [22], which is a software development platform aiming to

support multiple quantum SDKs for gate-based and annealing quantum applications,

and provide multiple design tools for creating a quantum algorithm. However, QPath

does not support a serverless computing model and scalability features for further ex-

pansion, and it is still in the preliminary phase without providing a performance eval-

uation to validate the proposed design. Fu et al. [201] proposed the overall framework

for developing heterogeneous quantum-classical applications, adapting with NISQ de-

vices. Instead of working with popular quantum languages and SDKs, they also pro-

posed a new programming language for quantum computing, called Quingo. Although

this is an exciting direction for further quantum framework development, it can face

many challenges when developing a new programming language compared to improv-

ing well-known languages. For example, expanding the support for large developer

communities, security testing for potential vulnerabilities, and covering all aspects of

quantum and classical computation. In another way, Claudino et al. [219] proposed the

XACC framework, which extended the C++ programming language to support quan-
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Table 3.6: A summary of related work and their comparison of system and software
engineering aspects for quantum computing

Criteria QPath
[22]

Quingo
[201]

XACC
[219]

QAPI
[219]

t|ket
[220]

algo2qpu
[221]

SCQ
[222]

QFaaS
(Pro-
posed)

Type (Main category) F SDK F ES SDK ES ES F

Sy
st

em
s

1. Serverless without Vendor
lock-in

× × × × × × × ✓

2. Modular/Microservices
Components

× × × × ✓ × ✓- ✓

3. Support multiple Quan-
tum Clouds

✓ × × × ✓ × × ✓

4. Support multiple Quan-
tum Simulators

✓ × × × ✓ × × ✓

5. Containerization/Kuber-
netes Integration

× × × × × × ✓- ✓

6. Distributed and Scalable
System

× × × × × × × ✓

7. Evaluation on NISQ de-
vices

× × ✓ ✓ ✓ ✓ × ✓

8. Permanent Data Storage ✓ × × × × × × ✓

9. Security & User Authenti-
cation

× × × × × × × ✓

10. Monitoring Integration × × × × × × × ✓

So
ft

w
ar

e

11. Hybrid Quantum-
Classical Integration

× ✓ ✓ × × ✓ ✓- ✓

12. Support multiple Quan-
tum SDKs

✓ × × × ✓ × × ✓

13. Built-in Software Li-
brary/Templates

✓ ✓ ✓ × ✓ × × ✓

14. Quantum Software
Workflows

× ✓ ✓ × × ✓ × ✓

15. Quantum Backend Selec-
tion

× × × × × × × ✓

16. REST API support with
API Gateway

× × × ✓ × × × ✓

17. Full-stack Software
Framework

✓ × × × ✓ × × ✓

18. DevOps (CI/CD) Inte-
gration

× × × × × × × ✓

19. Practical Use Cases ✓ ✓ ✓ × ✓ ✓ × ✓

20. Open-Source Software × ✓ × × ✓ × × ✓

Notes. F: Framework, SDK: Software Development Kit, ES: Empirical Study, ✓: Yes,×: No, -: Not validated
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tum chemistry simulations. However, this framework focused solely on designing mul-

tiple quantum algorithms for chemical problems and simulating quantum computation

on GPU backends. Cambridge Quantum Computing proposed t|ket⟩ [220], which is

an open-source language-agnostic quantum compiler for NISQ devices. This frame-

work focuses on circuit optimizations, transformation, and qubit mapping features and

does not consider the service-oriented quantum application approach. In light of the

Quantum Computing as a Service approach, Garcia-Alonso et al. [108] proposed the

proof-of-concept about Quantum API Gateway with two simple API endpoint valida-

tions (execution and feedback) using Python and Flask platform on the Amazon Braket

platform. This work also presented an execution time forecasting model and quantum

computer recommendation. Still, no information about what kind of quantum SDKs,

quantum problems, or datasets are used for the forecasting is provided. There is also

some Proof-of-Concept (PoC) designs for cloud-based quantum software development

that have been proposed in recent years. For instance, Sim et al. [221] proposed algo2qpu,

a hardware and software agnostic framework that supports designing and testing hy-

brid quantum-classical algorithms on the Rigetti cloud-based quantum computer. Using

their proposed framework, they implemented two applications in quantum chemistry

and machine learning. However, similar to the work mentioned above, algo2qpu also

did not apply the serverless quantum computing model but considered the standalone

quantum application model instead. Another minimum viable product (MVP) design

proposed by Grossi et. al [222] suggested using IBM services such as IBM Cloud Func-

tions and IBM Containers to integrate serverless features for Qiskit programs. However,

this work only considered single-SDK and single-vendor environments with no imple-

mentation or validation provided. This work did not consider the software workflow or

the backend selection strategy and depended on a specific quantum SDK and platform

technology. This approach can lead to a data lock-in problem, which is one of the most

serious challenges of serverless computing.

As shown in Table 3.6, we use ten criteria (1-10) to evaluate in terms of system ar-

chitecture and computing model. The major contribution of QFaaS is one of the first

frameworks adopting the serverless function-as-a-service model for quantum comput-

ing, which avoids vendor lock-in problems of serverless computing by supporting mul-
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tiple quantum SDKs/programming languages, quantum cloud providers, and simula-

tors (1). The idea of serverless integration is also proposed in [222] using Qiskit SDK

and IBM techniques. Still, no implementation and evaluation are provided to validate

the design, and it can also lead to the vendor lock-in problem as that design relies on

single vendor techniques. The core elements of the QFaaS system are developed on top

of open-source cloud-native technology, such as Docker container, Kubernetes, Open-

FaaS, and Gitlab, with flexibility for further expansion and integration (2). This system

design leverages the state-of-the-art techniques in classical cloud computing to support

the quantum computing as a service (QCaaS) model, which adapts to the limitations

of the NISQ computers. We validated the system design and used QFaaS to evaluate

the performance of multiple quantum simulators and computers to provide insight into

the current state of the NISQ era (3-7). The database integration with a common data

scheme for all different SDKs in QFaaS allows users to perform further analyses and

avoids data lock-in issues (8). Furthermore, we also incorporate other essential system

components, such as monitoring and security for QFaaS, to demonstrate the completed

quantum software stack in practice (9-10).

Regarding software engineering aspects to facilitate the Quantum FaaS model, we

consider the ten remaining features (11-20). Our framework simplifies the hybrid quantum-

classical integration model by providing function templates and a supported software

library (11-12). It allows users to write both classical and quantum code in a single file.

Besides, we also propose an adaptable quantum software life cycle with seven stages

of a quantum function and demonstrate its implementation in practice. This is the first

quantum function life cycle, as other proposals in the literature focused on the gen-

eral, standalone quantum software (14). We design a backend selection strategy and

directly apply it to QFaaS to automatically select the most suitable quantum backends

for executing the quantum computation parts (15). As several works in the literature

only proposed the proofs-of-concept (PoC) [108, 221, 222], we do not only propose the

PoC but also fully implement and validate the proposed PoC with practical use cases

(19) of well-known quantum circuits. Apart from adopting open-source cloud-native

techniques, we also develop full-stack software components for quantum functions.

QFaaS backend included a complete OpenAPI set with a centralized API gateway (16),
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a Python-based supported library, and multiple Docker-based function templates (13),

where its front end is a user-friendly web application. We demonstrate the first integra-

tion of continuous integration and continuous deployment (CI/CD) of DevOps into the

quantum software workflow (18). Finally, as we incorporated several latest open-source

techniques, our framework is also designed to be a part of the quantum open-source

software ecosystem to contribute to our effort in the early development of serverless

quantum computing (20).

In summary, as no existing quantum function-as-a-service framework in the litera-

ture consider the multi-SDK, multi-cloud environment, QFaaS is one of the first prac-

tical platforms that seriously investigated and prepared the initial steps toward a uni-

versal serverless quantum computing architecture. Our major innovation also includes

bringing state-of-the-art system design and software engineering techniques in classical

computing to support service-oriented quantum software development and mitigate the

challenges in the current NISQ era.

3.9 Summary

In this chapter, we proposed QFaaS - a holistic serverless framework for developing

quantum function as a service, enabling software engineers to leverage their knowl-

edge and experience to adapt to quantum counterparts in the Noisy Intermediate-Scale

Quantum era quickly. Our framework brings state-of-the-art methods such as container-

ization, DevOps, and the serverless model to reduce the burden of quantum software

development and pave the way toward combining hybrid quantum and classical com-

ponents. QFaaS provides essential features with multiple quantum software environ-

ments, leveraging the well-known quantum SDKs and languages to develop quantum

functions running on multiple quantum simulators or cloud-based quantum comput-

ers. The current implementation of QFaaS demonstrates the possibility and advantages

of our framework in developing quantum function as a service without vendor lock-in

issues, and can be seamlessly integrated into the current software workflow. Through-

out our empirical implementation and evaluation, we also highlight the lessons learned

and limitations of the quantum serverless approach that need to be further investigated.
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Software Availability:

The QFaaS Framework with the source code of all components and sample functions

code can be accessed from our iQuantum Initiative website:

http://clouds.cis.unimelb.edu.au/iquantum.

http://clouds.cis.unimelb.edu.au/iquantum


Chapter 4

Modeling and Simulation of Quantum
Computing Environments

Quantum computing resources are predominantly accessible through cloud services, with a po-

tential future shift to edge networks. This paradigm and the increasing global interest in quan-

tum computing have amplified the need for efficient, adaptable resource management strategies and

service models for quantum systems. However, many limitations in the quantum resources’ quan-

tity, quality, availability, and cost pose significant challenges for conducting research in practical

environments. To address these challenges, in this chapter, we propose iQuantum, a holistic and

lightweight discrete-event simulation toolkit uniquely tailored to model hybrid quantum computing

environments. We also present a detailed system model for prototyping and problem formulation in

quantum resource management. Through rigorous empirical validation and evaluations using large-

scale quantum workload datasets, we demonstrate the flexibility and applicability of our toolkit in

various use cases. iQuantum provides a versatile environment for designing and evaluating quan-

tum resource management policies such as quantum task scheduling, backend selection, hybrid task

offloading, and orchestration in the quantum cloud-edge continuum. Our work endeavors to create

substantial contributions to quantum computing modeling and simulation, empowering the creation

of future resource management strategies and quantum computing’s broader applications.

This chapter is derived from:

• Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “iQuantum: A toolkit for modeling and
simulation of quantum computing environments”, Software: Practice and Experience (SPE), Volume
54, Issue 6, Pages: 1141-1171, ISSN: 0038-0644, Wiley Press, New York, USA, June 2024.
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4.1 Introduction

Quantum computing holds enormous promise for solving computationally intractable

problems, revolutionizing various domains such as drug discovery [41], finance [190],

optimization [223], and machine learning [68, 70, 224]. The emergence of the cloud-

based quantum computing [51, 53] and quantum computing-as-a-service (QCaaS) [225]

models has enabled access to quantum computation resources without a massive up-

front investment in quantum hardware, leading to tremendous progress in quantum

software and algorithm fronts [57]. Major cloud providers, such as Microsoft Azure

[17], AWS [98], and IBM [16], now offer cloud-based access to their quantum comput-

ing services. Moreover, quantum computation resources are predicted to be extended to

the edge network [226] when quantum hardware becomes popular in the future, envi-

sioning the emergence of the hybrid paradigm of quantum cloud-edge continuum [227],

whose main components are illustrated in Figure 4.1. The future quantum computing

paradigm is anticipated to incorporate heterogeneous quantum and classical comput-

ing entities situated in different layers, including the cloud and the fog/edge layer. The

main differences between cloud-based resources and edge-based resources include the

computation capacity, mobility, and geographical distance to the data source or users

[228]. Each layer comprises different computation resources and intermediary compo-

nents, such as gateways and brokers for resource management and orchestration. If edge

computation resources are insufficient for executing incoming tasks, these tasks can be

migrated or offloaded to the upper cloud layer with more powerful capacity [229, 230].

It is important to highlight that this is the vision for the future expansion of quantum

computing, whereas most available quantum resources are only accessible through the

cloud due to the limitation in quantity, quality, and cost of current quantum hardware

[15].

As the demand for quantum computing services continues to rise rapidly, it triggers

the inevitable requirement for efficient system design and resource management strate-

gies to maximize the benefits of available quantum resources [155]. However, there

are several challenges to designing and evaluating system and resource orchestration

policies in practical environments, as previously discussed in Chapter 3. First, access
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Figure 4.1: Overview of Hybrid Quantum Computing Paradigm envisions the seam-
less integration of quantum and classical computation resources across different cloud
and emerging edge layers, with edge resources being geographically closer to end-users
(data sources), albeit with computational limitations compared to their cloud counter-
parts.
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to physical quantum computers is limited and costly. Although vendors such as IBM

Quantum offer free access to several quantum computers to the public, these devices are

on a small scale, comprising only a few qubits. In addition, completing a cloud-based

quantum task can take anywhere from seconds to hours because of the fair-share policy

that is in place for sharing limited resources among a large number of users worldwide

[155]. This means that some tasks may have to wait for others to finish before they can

be executed in a real quantum computer. On the other hand, the pricing model for com-

mercial quantum computing services is still expensive. This is because of the limitations

and operating costs associated with the current quantum hardware available. For exam-

ple, the IBM Quantum Pay-As-You-Go plan charges up to $1.6 USD for every second of

quantum execution (as of August 2023). Furthermore, it’s important to note that quan-

tum hardware is still in the Noisy Intermediate-Scale Quantum (NISQ) era [15], which

implies the limitation in the quality and quantity of qubits inside the quantum chips.

These challenges hinder large-scale evaluation and experimental validation of resource

management strategies. As a result, it’s crucial to have a simulation framework that can

model hybrid quantum computing environments to aid in the design and evaluation of

resource orchestration policies.

Over the last decade, simulation toolkits such as CloudSim [34] have gained popu-

larity for modeling cloud environments and supporting resource management research.

Moreover, several simulators have been proposed for hybrid cloud-edge and fog/edge

environments, including EdgeCloudSim [231], FogNetSim [232], iFogSim [35], EdgeS-

imPy [36]. These simulation toolkits play a significant role in the development of enor-

mous resource management policies for cloud and edge computing environments. How-

ever, as far as we know, none of the existing cloud-edge simulators supports the model-

ing of quantum computing systems and workloads. Meanwhile, existing quantum sim-

ulators mainly focus on emulating quantum physical operations of quantum computers,

and do not offer comprehensive support for modeling quantum cloud-edge computing

environments. As these quantum simulators use classical resources to mimic the actual

quantum execution, they can quickly reach the limitation of classical hardware and can

usually support up to tens to hundreds of qubits [233]. Besides, several quantum sim-

ulators focus on quantum communications, which support modeling quantum network
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protocols [234, 235]. While quantum networks represent a promising direction for the

future of quantum computing [93], it is important to highlight that quantum systems

can still utilize classical drivers and networks to handle user requests and facilitate co-

operation between quantum and classical computation. Ultimately, the lack of a model-

ing and simulation framework for quantum computing environments poses significant

challenges for research in quantum system design and resource management, impeding

researchers from effectively testing their system designs or task scheduling algorithms

for hybrid quantum computing systems. Furthermore, it also complicates reproducing

experimental results or comparing the performance of different algorithms or applica-

tions since no standard simulator is available.

To tackle these challenges, we propose iQuantum, a versatile and lightweight sim-

ulation framework designed to model quantum computing environments to facilitate

quantum software and system research, focusing on resource management and orches-

tration. The main approach of our toolkit is simplifying and modeling the environments

with resources that are quantum systems with key metrics such as number of qubits,

quantum volume, quantum processor speed [32], native gate sets, and qubit topology.

Similarly, we extract the features of quantum circuits to model as workload entities in

the environments. Then, we employ the discrete-event simulation method, which is a

popular simulation technique for operations research [236]. We leverage the core engine

and classical components of the latest version of CloudSim [34] to extend and adapt to

the quantum computing environment, expanding from the cloud layer to edge layers

with various potential use cases. Our toolkit can pave the way for the development of

a quantum environment modeling and simulation, which empowers researchers to pro-

totype, design, and evaluate their system design and policies in a simulated quantum

computing environment, eliminating the need for costly access to practical quantum re-

sources. Moreover, it enhances research and experimentation in quantum software and

systems, enabling result comparison and experiment replication for more robust and

impactful investigations aligned with the latest advances in quantum computing.

In this chapter, we thoroughly extend the architecture design, system model, and

implementation of iQuantum along with extensive empirical evaluation to demonstrate

the effectiveness of iQuantum for modeling and simulation of quantum computing envi-



118 Modeling and Simulation of Quantum Computing Environments

ronments in the cloud-edge continuum. The major contributions of our extended study

are as follows:

• We present a comprehensive system model for quantum computing environments

using key metrics and features of available quantum computers and quantum task

execution. Besides, we also propose various models and simulation logic for differ-

ent use cases in hybrid quantum resource management and orchestration. These

models serve as theoretical references for prototyping and problem formulation in

system design and resource management for hybrid quantum computing.

• We design the architecture of iQuantum based on the discrete-event simulation ap-

proach of CloudSim and extensively extend the entire implementation of iQuan-

tum to enhance the flexibility and support all proposed resource management use

cases, including task scheduling, backend selection, hybrid task orchestration, and

task offloading between edge and cloud layer.

• We validate and evaluate iQuantum in different scenarios using trustworthy datasets,

including IBM Quantum [16] calibration data for quantum systems and the MQT

Bench dataset [1] for the workload. Our findings demonstrate that iQuantum is a

versatile and efficient tool that holds great potential to support the development

and evaluation of policies related to various resource management issues.

• We discuss the lesson learned throughout the development of the iQuantum sim-

ulator, which can bring valuable insights for developing and extending quantum

computing environment modeling and simulation frameworks in the future.

Besides, as an open-source toolkit, iQuantum is designed to enhance and collaborate

with other tools in the quantum software ecosystem, specifically in the areas of quantum

environment modeling and simulation. This area is inevitably essential for the advance-

ment of quantum resource management policies, along with the rapid maturation of

quantum hardware and software.

The rest of this chapter is structured as follows: Section 4.2 reviews related work

and identifies gaps in the literature. Section 4.3 outlines the system model for the quan-

tum computing environment. Section 4.4 proposes the architecture design and imple-
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mentation of iQuantum. Section 4.5 presents different models for various use cases of

iQuantum in resource management and orchestration problems. Section 4.7 shows an

explanatory example, sample workflow operation of iQuantum, and performance eval-

uations from various scenarios and workload datasets. Section 4.8 discusses the lessons

learned from developing iQuantum. Finally, Section 4.9 concludes the chapter.

4.2 Related Work

Table 4.1 summarizes the overall comparison of iQuantum and other related work in

terms of modeling and simulation toolkit as well as quantum computing simulation.

In the classical computing domain, modeling and simulation tools such as CloudSim

[34] have become popular for their capability to facilitate the development and evalua-

tion of resource management policies.

In the rapidly evolving era of the Internet of Things (IoT) [237], paradigms such as

edge and fog computing are gaining prominence [238, 239]. Although CloudSim, the

predecessor of iQuantum, facilitates various simulation models for cloud computing-

based use cases, it cannot be directly used for modeling edge/fog environments. As

a result, new simulation toolkits are proposed to adapt to these kinds of computing

paradigms. Mahmud et al. [35] proposed iFogSim2, which extends the first version of

iFogSim [240] to support mobility, clustering, and microservices management policies in

fog and edge computing. Similarly, Souza et al. [36] propose EdgeSimPy, which employs

an agent-based modeling technique to represent each entity in the edge environment as

an agent that has its own behavior, decision-making capabilities, and interactions with

other agents and the environment. Additionally, IoT applications in emerging domains

like blockchain IoT (B-IoT) [241] and medical applications [242] present a new frontier.

Blockchain IoT integration offers enhanced security and efficiency in IoT scenarios. This

integration is particularly significant in applications where blockchain’s decentralized

and immutable nature can strengthen data integrity and trust in distributed IoT net-

works. Simulators such as ChainFL [243] and xFogSim [244], can be adapted to simulate

such scenarios, providing valuable insights into the resource management challenges

and opportunities inherent in B-IoT systems. Conversely, the key characteristic of the
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modeling toolkit is capturing the behaviors of the actual entities and modeling them

as an object or agents, then simulating the actual interactions among different entities

through events. However, there is no existing cloud/edge simulator support modeling

quantum computing resources and workloads.

Table 4.1: A feature comparison overview of related works with our iQuantum toolkit

Environment Modeling Policies Datasets Event Integration Language
Toolkits Focus Quantum Cloud Edge Modeling Support Simulation Possibility

QuNetSim
[234]

Network E × × Network
Protocols

- - ✓ Python

NetSquid
[235]

Network E × × Network
Protocols

- ✓ ✓ Python

QuEST
[245]

Circuit
Oper-
ation

E × × - - - ✓ C++

PAS
[246]

Circuit
Oper-
ation

E × × - - - - -

QXTools
[247]

Circuit
Oper-
ation

E × × - ✓ - - Julia

iQuantum
(Our toolkit)System

&
Work-
load

S ✓ ✓
Resources
Management

✓ ✓ ✓ Java

✓: Supported; ×: Unsupported; -: N/A; E: Emulation ; S: Simulation
(*Classical cloud features derived from CloudSim)

In terms of quantum computing simulation, it is important to highlight that there are

numerous quantum simulators, but they are mostly focused on simulating the physical

quantum operation, which mimics the real quantum systems and can be categorized as

”emulation”. However, none of the existing quantum simulation toolkits support mod-

eling the environments and resource management problems, which can be categorized

as ”simulation”, similar to other modeling toolkits in the classical realm [34].

Industry-standard quantum simulators, such as IBM’s quantum simulator integrated

with Qiskit [195] and Google’s quantum simulator employed with Cirq [196], are renowned

for their robustness in simulating quantum circuit operations. However, iQuantum dis-

tinguishes itself from these simulators in several key aspects. First, while IBM and

Google’s simulators primarily concentrate on the physical aspects of quantum compu-

tation, iQuantum mainly focuses on modeling quantum computing environments, fa-

cilitating research in resource management problems. This approach is similar to other
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well-known simulators in the classical domain, such as CloudSim [34], iFogSim [35], and

EdgeSimPy [36]. Second, iQuantum is designed as a lightweight, discrete-event simula-

tion framework, making it more accessible and easier to model and simulate the large-

scale environment with heterogeneous quantum (and classical) instances. This contrasts

with the more resource-intensive nature of several industry simulators, which may re-

quire more computational overhead when employed to design and evaluate resource

management algorithms. Additionally, iQuantum is designed with an interoperabil-

ity approach, enabling it to leverage the modeling of circuit and quantum computation

features extracted from these established simulators. Indeed, we can extract attributes

of quantum circuits from benchmark datasets (such as MQT Bench [1]) using Qiskit

and use IBM’s benchmark data on quantum volume and circuit layer operation per sec-

ond (CLOPS) [32] of quantum systems to model quantum computing environments in

iQuantum (see Section 4.7).

Apart from the built-in quantum simulators of common quantum SDKs such as

Qiskit, Cirq, Braket, and Q#, several works have proposed simulation frameworks for

quantum operation and communications. Regarding quantum networks, Diadamo et

al. [234] proposed QuNetSim as a framework for simulating different quantum net-

work protocols, such as quantum key distribution and quantum routing. As QuNetSim

relies on other qubit simulators (such as SimulaQron [248], ProjectQ [249], and QuTiP

[250]), its main objective is to develop quantum network protocol simulation rather than

distributed quantum system modeling. Similarly, NetSquid [235] is a discrete-event

network simulator for simulating quantum network protocols and systems. Although

quantum communications is certainly an important prospect of the future implication of

quantum technology, it is still in its infancy and requires more research effort to develop

standard protocols and methods. In practice, current quantum computing services can

still leverage the classical driver counterpart and network communication for quantum

execution. Therefore, our focus in iQuantum is to reflect the current nature of the quan-

tum computing environment in consensus with classical resources.

Besides, several simulators for quantum operation have been proposed recently.

Jones et al. proposed QuEST [245] to support simulating the behavior of quantum sys-

tems with high performance. Similarly, Bian et al. [246] proposed PAS as a lightweight
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quantum simulator, and the authors argued that PAS outperforms QuEST in terms of

quantum operation simulation. QXTools [247] is another Julia-based toolkit for simu-

lating large-scale quantum circuits using the tensor network approach, which can be

executed on a distributed computation cluster. However, as the main focus of these sim-

ulators is quantum operation, modeling and simulation toolkits for quantum systems

and workloads are needed to facilitate the design of resource management policies.

In terms of modeling and simulation tools for quantum computing environments,

especially for facilitating the design and evaluation of quantum resource management

policies, iQuantum can be considered as one of the first-of-its-kind toolkits. As iQuantum

is built on top of CloudSim [34], which is one of the most widely-used simulators over

the last decade for cloud computing environments, our toolkit can leverage the capa-

bilities of CloudSim to expand its support to classical resource modeling in the cloud

and extend to the edge network. Eventually, iQuantum serves as the unified toolkit for

supporting the hybrid quantum-classical computing paradigm in the edge-cloud contin-

uum, which enhances the seamlessly and simplicity of employing different frameworks

and paves a new way for research in system design and resource management for var-

ious scenarios, such as quantum computing and hybrid quantum-classical computing

environments. Although simulators can have their limitations compared to practical

environments (such as the QFaaS framework (see Chapter 3) for practical quantum en-

vironments), by capturing the timing and interactions of events, modeling and simu-

lation toolkits provide valuable insights into the performance resource utilization and

scalability of the overall systems.

iQuantum also offers other advantages that distinguish it from existing toolkits. For

instance, it provides support for external datasets, accommodating both OpenQASM

files for quantum tasks and quantum computer calibration data for quantum systems.

Our toolkit also facilitates data importing and exporting in a common CSV format, en-

abling further investigation and analysis. The modular architecture of iQuantum al-

lows for easy extension and customization to support various use cases. Furthermore,

iQuantum can be seamlessly integrated with common quantum SDKs like Qiskit [195],

enabling workload feature extraction and dataset generation. For users seeking more ad-

vanced resource management techniques, iQuantum’s compatibility with Python-Java
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brokers, such as Py4J1, allows for straightforward integration of machine learning-based

policies. Ultimately, these features collectively position iQuantum as a powerful and

flexible toolkit for modeling and simulation in hybrid quantum computing environ-

ments.

4.3 System Model for Quantum Environments

This section outlines the system model of key entities in the quantum computing envi-

ronments, including quantum processing units (QPUs), quantum nodes, and quantum

tasks. Figure 4.2 illustrates these entities and main attributes, which are described in

detail below.

4.3.1 QPUs and Quantum Computation Nodes

Quantum Processing Units (QPUs)

The computational unit of a physical quantum system (or quantum node - QNode) is a

quantum chip (or quantum processing unit - QPU).

A QPU qi of QNode Q can be defined as follows:

qi = {qw, qv, qs, qg, qt, qe} (4.1)

where:

• qw is the number of qubits (or width), which implies the scale of the QPU. The

more number of qubits, the more quantum information a QPU can process.

• qv is the Quantum Volume (QV) of the QPU, which indicates the quality of qubits

and the QPU’s capability to execute a quantum circuit precisely. Cross et al. [29]

proposed the measurement of QV as follows:

qv = 2min(d,m) (4.2)

1https://www.py4j.org/
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Figure 4.2: Overview of the system model and key attributes of entities in quantum
computing environments

where d and m are the depth and width of the largest square circuit that can be

faithfully executed. The higher the value of QV, the higher the possibility of getting

a precise execution result.

• qs is the number of circuit layers that can be processed per second (CLOPS) [32],

which indicates the speed of the QPU for processing quantum circuits. CLOPS can

be empirically measured by

qs =
M× K× S× D

time taken
(4.3)

where M = 100, K = 10, S = 100, D = log2 qv, which stands for the number of

evaluated templates, number of parameter updates, number of shots, and number
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of QV layers, respectively. The higher the CLOPS, the faster the QPU can operate.

• qg indicates a list of all supported single-qubit and multiple-qubit quantum gates

of the QPU. For example, most available IBM Quantum chips from 5 to 65 qubits

support five native gate sets, including CNOT, ID, RZ, SX, and X gate, where their

most recent 127-qubit and 433-qubit chips (Eagle r3 and Osprey r1) replace the

support of CNOT gate with ECR gate.

• qt represents the qubit topology (or connectivity) of all qubits in the QPU, which

can be modeled by a graph qt = (V , C), where V = {vi|1 ≤ i ≤ |V|}, |V| = qw

depicts the number of qubits and vi denotes the i-th qubit; C = {ci,j|vi, vj ∈ V , i ̸=
j} denotes the connection of two qubits, where ci,j denotes the connection between

qubit vi and qubit vj.

• qe represents a list of all error rates of the QPU, which can be defined as qe =

(Ev, Eg), where Ev = {ei|1 ≤ i ≤ |V|} denotes the list of all qubit error, and ev
i

depicts the readout assignment error of i-th qubit; Eg = {eg
k |1 ≤ k ≤ |qg|} denotes

the list of all quantum gate errors and eg
k depicts the readout assignment error of

k-th quantum gate. The errors of the two-qubit gate (CNOT and ECR gate) con-

tain all errors between each pair of two qubits in the QPU. The error rates model

can be useful in assisting the development of solutions for more complex resource

management problems that take into account the quality of qubits and the quan-

tum volume. However, it is important to note that supporting the evaluation of

the quantum errors impacts on quantum execution results is not within the scope

of our study and can be considered for future extension.

Besides, other calibration metrics of each qubit can be modeled to reflect the compre-

hensive properties of a QPU, such as T1 time, T2 time, frequency, and anharmonicity.

It is worth noting that although we support modeling all of these features in the im-

plementation of iQuantum, the complex resource management policies considering all

error rates and all calibration data of each qubit in the QPU are out of scope in this study,

which inspire the further contribution of other practitioner and researchers in the field

of quantum computing systems and quantum error mitigation.
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Quantum Nodes (QNodes)

A quantum computation node (QNode Q) can be modeled as follows:

Q = [{qi|1 ≤ i ≤ n}, πs] (4.4)

where n is the number of QPUs and πs is the local task scheduling of the quantum node.

Presently, most available quantum computer from well-known vendors such as IBM

Quantum, Rigetti, and IonQ only has single-chip quantum nodes. However, the pro-

posal for multi-chip quantum nodes such as IBM Quantum System Two2 are expected

to be released in the near future. According to the current situation and potential de-

velopment of quantum hardware, iQuantum supports both single-QPU (n = 1) and

multi-QPU (n ≥ 1) QNode models. Besides, users can design the scheduling policy πs

to determine the execution model of multiple incoming quantum tasks inside the quan-

tum node. More details and examples of scheduling policies can be found in Section

4.5.1.

4.3.2 Quantum Datacenters and Brokers

Quantum Datacenters (QDatacenters)

A cluster or centralized hub of multiple quantum nodes at the same location can be

defined as a quantum datacenter (DQ) as follows:

DQ = [{Qi|1 ≤ i ≤ |Q|}, ξ, χ] (4.5)

where |Q| is the number of QNodes, ξ is the cost model of using quantum computation

resources, and χ is the location of the quantum datacenter.

Different quantum cloud providers have different cost models for using their quan-

tum computing services. For example, IBM Quantum offers a Pay-As-You-Go plan

through IBM Cloud with a fixed price of using 27- to 127-qubit quantum computers

2IBM Quantum System Two

https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
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at $1.6 USD per second of quantum runtime3, whereas Amazon Braket [98] calculates

the total cost ξi of executing i-th quantum task γi at quantum computer q by ξi =

ξt
q + γs

i × ξs
q, where ξt

q is the cost per task, ξs
q is cost per shots of quantum node q, and γs

i

is the number of shots that quantum task γi need to be executed. Additionally, differ-

ent quantum computers offered by Amazon Braket have different per-task and per-shot

prices. Therefore, users can customize the pricing strategy to have an appropriate model

if they consider the cost of execution in the resource management problem.

The location χ of a quantum datacenter refers to either the cloud layer or edge layer,

where the quantum datacenter is hosted. Besides, it also indicates the linked quantum

broker, which interacts with the quantum data center for selecting and scheduling quan-

tum tasks.

Quantum Brokers (QBrokers)

The intermediary component in conjunction with a quantum datacenter to manage in-

coming quantum tasks and coordinates with the datacenter to determine the appropriate

backend for task execution can be defined as a quantum broker (QBroker) BQ as follows:

BQ = {DQ, Γ, πb} (4.6)

where DQ is the linked quantum datacenter, Γ is a list of all incoming quantum tasks,

and πb is the backend selection policy to determine which available quantum node is

suitable to place each incoming quantum task.

4.3.3 Quantum Tasks (QTasks)

A Quantum Task (QTask) γ is a fundamental unit of a quantum computation. Concep-

tually, a quantum application can include one or more quantum circuits that are being

sent to be executed in a quantum node. We model each single circuit as a QTask to sim-

plify the simulation process, making it more tractable to model and analyze quantum

computing environments, especially those involving complex scheduling and resource

3https://www.ibm.com/quantum/access-plans

https://www.ibm.com/quantum/access-plans
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allocation scenarios. A complex quantum application that involves more than one quan-

tum circuit can be modeled as multiple QTasks. The key features of a quantum task γi

can be modeled as follows:

γi = {γa, γg, γw, γd, γs, γe, γt} (4.7)

where:

• γa is the arrival time of the quantum task.

• γg is a list of all quantum gate sets used in the quantum circuit, which can contain

different single- and multiple-qubit quantum gates.

• γw is the quantum circuit width, which is measured by the number of qubits that

need to be used.

• γd is the number of circuit layers, which can be assumed to be directly related to

the depth of the circuit.

• γs is the number of shots (i.e., execution repetition) that circuit need to be executed.

• γt is the connectivity of all qubits in the circuit.

Besides, a quantum task can be associated with other metrics related to Quality-

of-Service (QoS), such as the acceptable error threshold for executing a quantum task.

Quantum circuit features such as quantum gates, circuit width, circuit depth, and qubit

connectivity extracted from SDKs such as Qiskit can be mapped to QTask automatically.

For example, we extracted features of quantum circuits in QASM format from the MQT

Bench dataset [1] and mapped them to corresponding QTasks to represent the workload

needed to be processed within the quantum computing environment (see Section 4.7).

A task placement configuration for task γi ∈ Γ can be represented as σi = {γi, qk} ∈
Σ, where qk ∈ Q and 1 ≤ k ≤ |Q| denotes the index of the quantum computation

node. More details about quantum task scheduling and use cases for quantum resource

management strategies are discussed in Section 4.5.
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4.4 iQuantum Architecture Design and Implementation

4.4.1 Architecture and main components

We developed iQuantum using the discrete-event simulation approach, leveraging the

core components of the CloudSim toolkit [34]. The initial design of iQuantum aimed

to demonstrate the possibility of modeling quantum computing environments. To sup-

port a hybrid quantum-classical environment and expand to modeling the potential use

cases, we propose an improved layered design for the iQuantum toolkit, as shown in

Figure 4.3. We have significantly enhanced the original design through extensive refac-

toring and added new features to enhance the simulation process for both quantum and

hybrid quantum-classical environments.

Figure 4.3: Architecture Design of iQuantum incorporates five main layers, dataset sup-
port, and other auxiliary components.

iQuantum is designed with a modular architecture that comprises five main layers:

core simulation, physical, logical, middleware, and resource management. All elements

in these layers are implemented to demonstrate the functionality and usefulness of our

toolkit in modeling, simulating, and evaluating resource management strategies for hy-

brid quantum-classical computing in the cloud-edge continuum. Additionally, various
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utility toolkits have been developed to aid in the simulation process.

The following subsections describe the key components of each layer in the iQuan-

tum framework.

Core Simulation Layer

The Core Simulation layer in iQuantum is built on the discrete event management frame-

work in CloudSim [34], which is one of the most widely used simulation toolkits for clas-

sical cloud computing environments. The discrete event simulation technique is highly

suitable for simulating and modeling dynamic events and their interactions over time

in complex computation systems such as cloud-edge environments. This technique is

commonly used in many other simulation toolkits, including iFogSim2 [35], ns-3 [251],

and OMNET++ [252]. We enhanced the core simulation framework of CloudSim to

incorporate quantum features and improve clarity in the context of hybrid quantum-

classical computing in cloud-edge environments. In iQuantum, the whole system is

represented as a set of entities that interact with each other through events. After start-

ing the simulation, the core simulation components initialize all entities based on the

provided scenario and register all computation resources with the central Resource In-

formation Service (RIS). The simulation moves forward by scheduling and processing all

defined events in chronological order. Each event alters the state of the system and can

possibly schedule new events for the future. The simulation continues until it reaches

a predetermined termination condition, such as a specified time duration or a certain

number of tasks.

Physical Layer

The Physical Layer encompasses various components, including QDatacenter, CData-

center, Quantum Computation Node (QNode), and Classical Computation Node (CN-

ode), which collectively enable the simulation of a hybrid quantum-classical computing

environment.

Processing Units in iQuantum comprise both Central Processing Unit (CPU) and

Quantum Processing Unit (QPU). CPUs handle classical computations and support the
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quantum task compilation and coordination of hybrid tasks in the system. Each CPU

entity (formerly Pe in CloudSim) is modeled by Million Instructions Per Second (MIPS)

[34]. QPUs (or quantum chips) are responsible for executing quantum tasks. We lever-

age common metrics and properties of gate-based quantum devices to model a QPU

in iQuantum, including the number of qubits (scale), Quantum Volume (QV - quality),

Circuit Layer Operations Per Second (CLOPS - speed), qubit connectivity topology, sup-

ported quantum gates, qubit, and quantum gate error rates (see Figure 4.2). To simplify

the terminologies, we used “node” to refer to the physical computation devices, where

QNodes represent the quantum computer (or quantum system) and CNodes represent

the classical server or host (formerly in CloudSim). Each node can contain one or more

processing units, enabling parallel execution of tasks. In the classical domain, a CNode

can be modeled with other capacities such as RAM and storage. As similar techniques

for quantum computing have not yet been invented or are in the early stages of develop-

ment, we only consider adding QPUs for QNodes in iQuantum at this stage. However,

these metrics can be modeled in the future as the technology advances. Besides, it is im-

portant to note that current quantum computers mostly support a single quantum chip

(QPU). However, a multi-QPU quantum computer is expected to be invented soon with

planned roadmaps by major hardware vendors such as IBM. In addition to computing

capacity, each node can be associated with different resource management policies and

pricing models. For QNodes, users can model different cost models, as different quan-

tum providers offer different pricing models. For instance, IBM Quantum offers a cost

per second of the quantum execution model, while Amazon Braket offers a cost-per-

execution and shots (iterations) model.

The datacenters in iQuantum, namely QDatacenter and CDatacenter, serve as the

infrastructure for resource coordination. In general, a data center can be seen as a col-

lection (or cluster) of multiple computing nodes (QNodes or CNodes), which can be

coordinated to perform a common task. Each datacenter entity is associated with a cor-

responding class to model a list of all belonging computation nodes and other necessary

characteristics.
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Logical Layer

The Logical Layer in iQuantum consists of abstractions that represent the classical virtu-

alized resources and computation tasks on the system. These abstractions are designed

to provide a simplified and standardized interface for both classical and quantum coun-

terparts. The classical part is mainly inherited from CloudSim entities, which includes

resource and application abstractions such as Virtual Machines (VMs), containers, and

Classical Task (CTask). VMs are virtualized computing resources allocated within a CN-

ode, while containers represent containerized computing resources allocated within a

VM. They offer an isolated and flexible environment for deploying and running clas-

sical applications. Additionally, CTasks represent a classical task (formerly Cloudlet in

CloudSim) that can be scheduled and executed on classical resources. The quantum part

includes the model of quantum task (QTask) as the virtualization technique for quantum

counterpart is not yet invented. A QTask represents a computation task that needs to be

executed on the quantum computing resources. It encapsulates the quantum algorithm

or quantum circuit, along with any necessary parameters and configurations, such as

the number of qubits, number of circuit layers, quantum gates, and other execution con-

straints. By utilizing the QTask abstraction, users can simulate the execution of quantum

algorithms and evaluate their performance in conjunction with the classical infrastruc-

ture.

Gateway Layer

The gateway layer comprises intermediary components, including gateways and bro-

kers, which facilitate communication and task orchestration between cloud and edge

computation components. In iQuantum, a gateway (cloud or edge gateway) is a commu-

nication interface between data center brokers and the layer below. It receives incoming

tasks, classifies them, and dispatches them to the appropriate broker for further schedul-

ing. The brokers, namely QCloudBroker, QEdgeBroker, CCloudBroker, and CEdgeBro-

ker, then perform the task scheduling based on the resource management policies in the

system.
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Resource Management Layer

This layer enables users to prototype and evaluate various management policies, includ-

ing task scheduling, migration, orchestration, and resource provisioning.

• Task scheduling (or task placement): An efficient placement technique must be de-

signed to optimize resource utilization, especially for limited and expensive re-

sources such as quantum computing devices. It is also possible to consider other

objectives, such as minimizing execution time or optimizing the precision of quan-

tum execution results by scheduling tasks to quantum nodes with higher quantum

volume.

• Task offloading: Due to the dynamic nature of the cloud-edge environments, an

adaptive task migration technique must be designed to migrate tasks to other com-

putation nodes or offload tasks from the edge layer to the cloud layer when the

edge resources are unavailable or insufficient to execute tasks.

• Resource provisioning: iQuantum can prototype different resource allocation strate-

gies, such as container or virtual machine provisioning and multi-processing unit

(CPUs and QPUs) allocation to computation nodes (CNodes and QNodes). It

is important to note that resource provisioning policies are mainly for classical

resources, as quantum resource virtualization or partitioning is not yet mature.

However, it can be extended in future releases to adapt to the current nature of

quantum technology.

4.4.2 Implementation of quantum components

The overview of the main class diagram for the quantum entities in iQuantum is shown

in Figure 4.4. The core classes for discrete-event simulation are adapted from the latest

version of CloudSim to support the seamless integration of iQuantum with classical

component modeling.

1. iQuantum class is the core entity, which triggers the initialization of all entities,

runs a clock tick during the simulation to record all events, manages the simula-

tion, and triggers all entities to shut down at the end of the simulation.
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Figure 4.4: Overview of class diagram for quantum components

2. SimEntity and SimEvent: Each core entity in the quantum environment, such as

quantum data centers and brokers, is an extension of the SimEntity class, which

can generate events for interaction with other entities. Each simulation event is

associated with a unique ID (defined in iQuantumTags) and is represented using

SimEvent class, which includes properties such as two entities, timestamps, and

all exchanging information in the event.

3. ResourceInformationService (RIS): This class handles the resource registration

of QDatacenter entities when they are initialized.

4. Gateway is the abstract class that represents the intermediary component that re-

ceives all incoming tasks from users or below the layer, then classifies and dis-

patches to corresponding brokers for further scheduling. Two implementations of

this class, CloudGateway and Edgegateway, represent the gateway of cloud and

edge layers, respectively.

5. QBroker class models a quantum broker that interacts with the Gateway and QDatacenter

to schedule incoming QTask to a suitable QNode in the QDatacenter. Two ex-

tended classes, namely QCloudBroker and QEdgeBroker, handle the brokering

job at the cloud layer and edge layer accordingly.

6. QDatacenter is the generalized class model of the datacenter (or a cluster) of mul-
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tiple quantum nodes located in the same areas. There are two specific classes that

extend this class for modeling a cloud-based quantum datacenter (QCloudDatacenter

) and an edge-based quantum node cluster (QEdgeDatacenter). A list of all asso-

ciated QNode and other configurations of QDatacenter is defined in the

QDatacenterCharacteristics class.

7. QNode class represents the gate-based quantum computer, which is used for exe-

cuting QTask. Each QNode can consist of one or more QPU, cost of execution, and

a QTask scheduling policy. Each QPU can be modeled in QPU class. Each QPU

class represents different metrics, such as the number of qubits, quantum volume,

CLOPS, list of all supported gates, and qubit topology. In the QubitTopologyExtended

class, we model the connectivity of all qubits along with the error rates of each

qubit and quantum gate. Users can also import calibration data from vendors,

such as IBM Quantum, to quickly model the quantum nodes.

8. QTask class represents all features of a gate-based quantum task (or quantum cir-

cuit). Users can extract the circuit features of a quantum task (from a QASM file or

CSV dataset) and import them into iQuantum automatically. The connectivity of

qubits in a QTask can also be modeled using the QubitTopology class.

9. QTaskScheduler is an abstract class to model the scheduling policy to distribute

resources of each QNode among multiple incoming QTasks. We implemented the

QTaskSchedulerSpaceShared by default for QNode, which is described in detail

in section 4.5.1.

In the context of our simulation framework, it is important to outline the scope of

iQuantum regarding quantum physical operation. iQuantum’s design does not include

the direct simulation of quantum physical phenomena such as superposition and entan-

glement. This decision aligns with our framework’s objective to provide a high-level

simulation environment primarily concerned with the operational aspects of quantum

computing environments. However, iQuantum is capable of modeling quantum cir-

cuit features from external quantum SDKs such as Qiskit. For instance, quantum circuit

features can be obtained from these SDKs and subsequently incorporated into iQuan-

tum’s simulations to represent a QTask. This integration allows iQuantum to model
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the outcome and performance implications of quantum computations based on the em-

pirical benchmark data, albeit at an abstract level. In this way, iQuantum can simulate

the broader operational environment of quantum computing, such as the scheduling of

quantum tasks into an appropriate quantum system to optimize resource management.

4.4.3 Quantum Nodes and Workload Datasets

Initially, simulation scenarios in iQuantum can be defined manually, similar to CloudSim

[34]. This approach allows users to customize the definition and attributes of all entities

in the system. However, this task can be trivial for explanatory or small experiments but

impractical for large-scale experiments with a vast number of heterogeneous devices

and tasks. To improve the flexibility of dataset processing in iQuantum, we support

quick prototyping by using external datasets. Datasets in iQuantum are expected to

be formatted as a CSV file, which is commonly used in machine learning and software

domains.

• Quantum nodes: iQuantum supports the use of a calibration datasheet format,

adopted from IBM Quantum [16], to model all attributes of a QNode, including

detailed qubit topologies and error rates.

• Quantum tasks: The quantum workload dataset in iQuantum can be generated

by extracting all features from the OpenQASM file to a CSV file. You can import

this dataset directly into iQuantum to automatically generate QTasks for evaluat-

ing resource management policies. We derived several sets of quantum workload

datasets for iQuantum based on QASM files from the MQT Bench [1].

4.5 Use Cases of iQuantum for Quantum Resource Management
Simulation

In this section, we demonstrate the usefulness and effectiveness of iQuantum in model-

ing quantum computing resource management problems, such as quantum task schedul-

ing and hybrid quantum-classical task orchestration in the cloud-edge continuum. In
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order to make our explanation accessible to a wide range of readers, we explain how

iQuantum can be used with general resource management policies and discuss the pos-

sibility of tackling more complex problems. It is important to note that creating new

resource management policies is not within the scope of this chapter.

4.5.1 Quantum Task Scheduling

Effective task scheduling (or task placement) is a crucial aspect of distributed system

research, which also applies to the quantum computing domain. The goal is to enhance

the management of computational resources by optimizing resource utilization, reduc-

ing the overall time taken to complete tasks, and minimizing the cost of resource usage.

The overall simulation logic of QTask scheduling problems in iQuantum is described

in Algorithm 2. We divide the quantum task scheduling process into two main stages:

quantum node selection (or backend selection) and task allocation at QNode. After ini-

tializing the environment and the simulation clock, all tasks are submitted to the clos-

est gateway (Cloud Gateway or Edge Gateway). Then, the gateway classifies and dis-

patches quantum and classical tasks to their corresponding brokers. For quantum tasks,

the key steps of each stage in the scheduling process are as follows:

Backend Selection

QBroker communicates with the quantum data center to gather information about the

current environment, combining with all features of the incoming tasks to determine

which QNode is the most appropriate backend for executing each QTask. This proce-

dure comprises two main steps:

1. Pre-selection: First, QBroker performs this process to select all potential QNodes

QT , which satisfies the strict requirements of executing tasks to reduce the over-

head for the backend selection. Several prerequisites to place a QTask γi to a po-

tential QNode qj ∈ QT are considered, including:

(a) The qubit number of a potential QNode (qw
j ) must be equal to or higher

than the required qubit number (or circuit width) of QTask (γw
i ), denoted
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Algorithm 2: QTask Scheduling Simulation Logic
Input : All incoming QTasks: Γ = [γ1, γ2, ..., γn]

All available QNodes: Q = [q1, q2, ..., qm]
Backend Selection Policy: πb

Output: List of placements: Σ = [σ1, σ2, ..., σn]
1 Initialize simulation clock t← 0;
2 Σ← [];
3 for i← 1 to n do
4 Update t & all QNodes processing time;
5 γi ← Γ[i];
6 qT ← null;
7 QT ← null;
8 for j← 1 to m do
9 qj ← Q[j];

10 if qw
j ≥ γw

i and γ
g
i ⊆ qg

j then
11 ωij ← qubitMapping(γt

i , qt
j);

12 if ωij ̸= null then
13 Update QTask γi;
14 Append qj to QT ;
15 end if
16 end if
17 end for
18 if QT ̸= null then
19 qT ← πb(QT , γi);
20 end if
21 σi ← {γi, qT};
22 Append σi to Σ;
23 end for
24 return Σ;
25 Distribute QTasks according to Σ ;
26 Perform QNode local scheduling process ;
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as qw
j ≥ γw

i . At this stage, we assume that a quantum circuit cannot be split

and executed on different QNodes. It is important to acknowledge that tech-

niques such as circuit cutting [253], are in the early stages of development and

can be considered in the future.

(b) All quantum gates used in QTask (γg
i ) need to be supported by the gate sets

of the QNode (qg
T), denoted as γ

g
i ⊆ qg

j . Otherwise, the transpiler can be used

to convert unsupported gates [254] to the native gate set of QNode.

(c) It is possible to find a mapping (ωij) of the QTask’s qubit connectivity (γt
i ) and

the qubit topology of the QNode (qt
j). iQuantum also allows users to model

and evaluate their qubit mapping strategy or use the default backtracking-

based qubit mapping policy.

Other constraints, such as cost, quantum volume, and quality of services (QoS),

can also be considered. If all prerequisites are satisfied, the QNode will be added

to the potential QNodes QT for the backend selection.

2. Selection: QBroker can then apply the backend selection policy (πb) to select the

most suitable QNode from the pre-selected list in the previous step. This policy is

driven by different objectives and constraints defined by users.

Task Allocation

After the backend selection procedure, QDatacenter will place each QTask to the selected

QNode for execution. All arrived tasks are place in the queue at QNode and will be exe-

cuted based on the QNode’s task allocation policy. Different strategies for task allocation

can be designed to schedule multiple incoming quantum tasks in the appropriate order

to minimize the execution time or achieve other resource utilization objectives.

For the classical computing domain, there are two main policies for allocating mul-

tiple tasks for execution in classical computation resources, including the Space-shared

and Time-shared policies [34]. Examples of comparable strategies for quantum tasks are

illustrated in Figure 4.5. We assume there is a 7-qubit QNode and 5 QTasks (arrived in

order from q1 to q5) in the waiting queue. The width and height of each QTask represent
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its number of qubits and number of circuit layers, respectively.

Figure 4.5: Example of two allocation strategies for five different quantum tasks (se-
quenced as q1 to q5) within a 7-qubit quantum node. a) The Space Shared policy ded-
icates separate quantum resources to each task. b) Time Shared policy allocates tasks
in even time slots using a round-robin approach, resulting in pausing and resuming of
tasks q3 and q4, rendering it impractical for quantum computing.

• In space-shared policy, quantum resources (qubits) are allocated exclusively to

each task for the entire duration of its execution without any time-sharing. The

remaining tasks must wait for available resources if other tasks occupy current

resources.

• In the time-shared policy, the available resources can be divided into time slots and

allocated to tasks or users in a round-robin fashion. Each task is assigned resources

for a fixed time interval, after which the resources are reassigned to the next task

in the queue.

It is important to highlight that the time-share approach is impractical for quantum task
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execution at the moment. It is mainly because a quantum task cannot be suspended

and then resume its previous quantum state to continue executing in the future due to

the no-cloning theorem of quantum computing. Therefore, the space-shared policy is

suggested to be used as default in iQuantum for task allocation at QNode. In the future,

we anticipate that multiple quantum tasks can be parallel executed in different areas of

the qubit topology in a quantum computer. However, it is challenging to realize this

approach in the current NISQ era [15] as it can be affected by noise and complicated

qubit reset control.

4.5.2 Hybrid Quantum Task Orchestration

Quantum computing is predicted to enhance classical computing rather than replace

it entirely. It can handle tasks that are best suited to its distinctive features. In this

way, a hybrid quantum-classical computing system can be a potential paradigm to max-

imize the capabilities of both quantum and classical systems during the NISQ era [58].

This approach utilizes the advantages of classical computing for tasks such as data pre-

processing and post-processing while assigning more computationally demanding tasks

to quantum resources [255].

iQuantum leverages the classical entities in CloudSim to support modeling classical

resources and its local resource management policies within the classical data center.

Additionally, user can design their policy for orchestrating quantum and classical tasks

from the Gateway to the appropriate broker. The hybrid task orchestration logic is de-

picted in Algorithm 3. It is important to note that different resource provisioning can

be applied to classical servers (CNodes) to allocate logical resource units such as virtual

machines (VMs) and containers. However, the equivalent technique is not yet available

for quantum resources as QTasks are executed directly in quantum nodes.

After the environment setup, all tasks can be submitted directly to the closest Edge

gateway. Then, Edge Gateway classifies and dispatches each task to Quantum Edge Bro-

ker (QEBroker) or Classical Edge Broker (CEBroker) for the scheduling process. Users

can design different scheduling policies for classical and quantum tasks to achieve their

objectives. For quantum tasks, the complete scheduling process can be done as de-
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Algorithm 3: Hybrid Task Orchestration Logic
Input : All incoming tasks: Λ = [λ1, λ2, ..., λn]

QNodes: Q = [qc
1, qc

2, ..., qc
m, qe

1, qe
2, ..., qe

k]
CNodes: C = [cc

1, cc
2, ..., cc

p, ce
1, ce

2, ..., ce
l ]

Backend Selection Policies: πQ, πC
All VM/Container Provision Policies

Output: List of placements: Σ = [σ1, σ2, ..., σn]
1 Initialize simulation clock t← 0;
2 Ce

V , Cc
V ← Apply VM/Container Provision Policies;

3 Submit all tasks to Edge gateway;
4 Σ← [];
5 for i← 1 to n do
6 Update t & all processing time;
7 λi ← Λ[i];
8 bT ← null;
9 if λi.type = QTask then

10 Send λi to QEBroker;
11 Apply QTask scheduling policy (Algo. 1)
12 bT ← πQ(λi,Qe) ;
13 else
14 Send λi to CEBroker;
15 Apply CTask scheduling policy;
16 bT ← πC(λi, Ce

V);
17 end if
18 σi ← {λi, bT};
19 if σi ← false then
20 Offload λi to Cloud Gateway;
21 σi ← Repeat 8-18 on Cloud resources;
22 end if
23 Append σi to Σ;
24 end for
25 return Σ;
26 Distribute tasks according to Σ ;
27 Perform local scheduling process at nodes ;
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scribed in Algorithm 2 (Section 4.5.1). For classical tasks, more discussion about task

scheduling and resource management policies can be found in [34].

Additionally, the task offloading and migration problems can be modeled in iQuan-

tum in case the computation resources at the Edge layer are insufficient for executing the

incoming tasks. For example, a quantum node at the Edge layer does not have enough

qubits for executing quantum tasks as edge nodes have limited capacity compared to the

cloud nodes. In this case, the corresponding broker will offload these failed tasks from

the edge to the cloud gateway. Accordingly, a similar orchestration process can be per-

formed at the cloud layer to distribute all arrived tasks to the most suitable computation

node.

Figure 4.6: An example of hybrid task orchestration in Cloud-Edge continuum. Four
services incorporate different quantum and classical tasks, varying in execution time
and resource requirements. Each task can be executed on edge computing resources or
offloaded to the cloud if edge resources are insufficient for execution.

An example of hybrid task orchestration in the cloud-edge continuum is illustrated

in Figure 4.6. We assume four hybrid services (or applications) that need to be exe-

cuted. Each service (or application) can contain multiple quantum and classical tasks

that require different computation resources. Service 1 and Service 4 contain only clas-

sical tasks or quantum tasks, in which the smaller task can be sent to executed using

edge resources, and the larger one can be offloaded to the cloud. Service 2 and Service

3 contain both quantum and classical tasks, which can be sent to their most appropri-

ate computation node for execution. If the resource at the edge layer is sufficient for
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the incoming task, it can be used to place the task to reduce the communication latency

and overhead for the cloud. More complex scenarios can be modeled within our toolkit.

When iQuantum used with CloudSim/iFogSim, one can model and simulate a hybrid

quantum-classical computing environment and evaluate new hybrid task orchestration

algorithms.

4.6 Example of Simulation Workflow

Figure 4.7 depicts an overview of the simulation workflow in iQuantum, which consists

of four main stages.

Figure 4.7: Overview of the Simulation Workflow in iQuantum

First, the user needs to define the scenario manually or automatically using the

dataset generator and importer. Then, when the simulation is initialized, it will first

set up the environment with all pre-defined entities. Next, it executes all resource man-

agement policies, such as provisioning, scheduling, migration, and orchestration of all

quantum and classical tasks. Finally, when the simulation stop condition is met, the

simulation will be terminated, and generate the outcomes for the user in CSV format for
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further analysis.

To demonstrate the main steps of setting up a simulation in iQuantum, we present an

explanatory example as Figure 4.8. A quantum datacenter with a single 7-qubit QNode

follows the configuration of ibmq oslo node from IBM Quantum (QV 32, CLOPS 2,600).

This QNode receives two quantum tasks, QTask 1 and QTask 2, with 4 qubits and 3

qubits, respectively. Both QTasks employed 3 basic gates (CX, RZ, X), which are fully

supported by the quantum node. QTask 1 comprises 100 circuit layers and will execute

4,000 shots, while the metrics for QTask 2 are 50 layers and 1,000 shots.

Figure 4.8: Example of two QTasks (left) and possible qubit mapping into ibmq oslo
node (right)

Step 1. Initialize the iQuantum core simulation entity by using iquantum.init()

method.

Step 2. Create a list of QNode instances. Users can model manually or automatically

by using the predefined QNode and add to qNodeList as follows (Code 4.1):

1 QNode qNode = IBMQNode.createNode(id,"ibm_oslo",new

QTaskSchedulerSpaceShared());

2 qNodeList = new ArrayList<QNode>();

3 qNodeList.add(qNodeOslo);

Code 4.1: Sample code for importing ibmq oslo QNode

Step 3: Create a QCloudDatacenter. qNodeList and other information, such as cost

of execution in the quantum datacenter are modeled in a QDatacenterCharacteristics
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object.

1 QDatacenterCharacteristics characteristics = new

QDatacenterCharacteristics(qNodeList, timeZone, costPerSec);

2 QCloudDatacenter qDatacenter = new QCloudDatacenter("QCDatacenter",

characteristics);

Code 4.2: Sample code for modeling a QDatacenter

Step 4: Create a CloudGateway and a linked QCloudBroker object as follows:

1 QCloudBroker qBroker = createQBroker();

2 CloudGateway cloudGateway = new CloudGateway("CloudGateway_0

", qBroker);

Code 4.3: Sample code for modeling a broker and a gateway

Step 5: Create a list of quantum tasks (QTask) manually or import the QTask dataset

automatically from the CSV file. As this example only consists of two QTasks, they can

be modeled manually as follows:

1 List<int[]> q1Edges = new ArrayList<>();

2 q1Edges.add(new int[]{0, 1});

3 q1Edges.add(new int[]{1, 2});

4 ... [truncated]

5 QubitTopology q2Tpl = new QubitTopology(3, q2Edges);

6 ArrayList<String> qg = new ArrayList<>(Arrays.asList("CX", "RZ", "X"

));

7 QTask qtask1 = new QTask(0, 5, 100, 4000, qg, q1Tpl);

8 QTask qtask2 = new QTask(1, 3, 50, 1000, qg, q2Tpl);

Code 4.4: Sample code for modeling two QTasks

Step 6: Design and implement the resource management policies. For demonstra-

tion, we implemented a simple QTaskSchedulerSpaceShare policy by extending the

QTaskScheduler class. We estimate the approximate completion time (tq) of a quantum

task inside a quantum node by using the following equation:

tq =
γd

qs × γs (4.8)
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where γd is the number of circuit layers in the quantum task, qs is the CLOPS of the

quantum node, and γs is the number of shots that the quantum task needs to be exe-

cuted. It is important to note that other factors, such as transmission time and classical

runtime, may be considered to estimate the total completion time. More details about

quantum task scheduling are discussed in Section 4.5.1.

Step 7: Submit all quantum tasks to CloudGateway and start the simulation. Once all

the simulation tasks are complete, stop the simulation and print out the final outcome.

1 cloudGateway.submitQTasks(qTaskList);

2 iQuantum.startSimulation();

3 iquantum.stopSimulation();

4 List<QTask> rs = qBroker.getQTaskReceivedList();

5 QTaskExporter.printQTaskList(rs);

Code 4.5: Sample code for starting the simulation and print out the result

The simulator shows all events happening during the simulation period.

1 0.0: CloudGateway : Dispatching 0 CTasks and 1 QTasks from Cloud

Gateway to Brokers for processing

2 0.0: QCBroker: Cloud Resource List received with 1 resource(s)

3 0.01: QCBroker: Started scheduling all QTasks to QDatacenter

4 0.01: QBroker: Checking if QNode #0 has enough qubits/gates to

execute QTask0

5 ....

6 153.86: QBroker: QTask 0 result received

7 173.09: QBroker: QTask 1 result received

8 173.09: QBroker: All QTasks executed. Finishing...

9 173.09: Simulation: No more future events

Code 4.6: Sample events in the simulation

The simulation results show that two quantum tasks are submitted to the QNode at

timestamp t = 0.01s (minimum interval between 2 different events). The execution times

of QTask 1 and QTask 2 in the QNode are 153.85s and 19.23s, respectively. According

to the Space-shared scheduling policy, QTask 2 can only be executed after QTask 1 fin-

ishes its execution. The total execution time of all quantum tasks is 173.08s. As noted

above, these results are the same as when we manually calculated using Equation 4.8.
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More large-scale simulation scenarios and evaluation of iQuantum are discussed in the

following section.

4.7 Verification and Performance Evaluation

In this section, we conduct a comprehensive verification and evaluation of iQuantum in

different scenarios by using a well-known benchmarking quantum workload dataset to

verify the accuracy of the conceptual model’s implementation and its performance with

the proposed use cases discussed in Section 4.5. The primary findings of the empirical

experiments are discussed in this section.

4.7.1 iQuantum Simulation Verification

Simulation is a cost-effective and less complex alternative to empirical experimentation

for understanding real-world systems. [256]. However, due to the high complexity of

real-world systems, simulators often employ assumptions and abstractions, which can

introduce certain inaccuracies while simplifying the model. Therefore, a key aspect of

simulation studies is ensuring that these models maintain acceptable accuracy levels,

considering their assumptions and abstractions. This involves two critical processes:

validation, which assesses if the conceptual model is a true representation of the real

world, and verification, which ensures the correct implementation of the model [36].

For the system model validation, the conceptual model and metrics in quantum are

devised based on well-known studies on quantum benchmarking [29, 32, 257, 258] with-

out further modification. Besides, the validation and verification of classical compo-

nents had been studied in CloudSim [34]. Thus, the quantum system model validation

and classical system models are out of the scope of this study. The rest of this section

demonstrates a verification to ensure the correctness of iQuantum implementation for

quantum-based features before conducting a large-scale evaluation, following the veri-

fication approach of other modeling and simulation studies, such as [36, 256].
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Scenario description

We use the quantum cloud-edge infrastructure as depicted in Figure 4.9 to compre-

hend the proposed use cases along with the correctness verification of iQuantum’s im-

plementation. Detailed attributes of heterogeneous QNodes, which are adopted from

IBM Quantum [16], are depicted in Table 4.2. The edge layer consists of a cluster of 5

quantum nodes, modeled according to information of different 27-qubit IBM Quantum

Systems, including ibm hanoi, ibm auckland, ibm cairo, ibmq mumbai, and ibmq kolkata.

The cloud layer has a datacenter of 6 QNodes, following the 127-qubit topology of the

ibm washington system with different metrics for QV and CLOPS to demonstrate the het-

erogeneity of the quantum cloud environment.

Figure 4.9: Overview of the infrastructure considered in iQuantum’s verification and
performance evaluation

To facilitate the verification, we use 4 QTasks that represent different quantum ap-

plications extracted from the MQT Bench dataset [1], in which the circuit attributes are

shown in Table 4.3. All QTasks are initially submitted to the edge gateway for pro-

cessing. Following the proposed system model and use cases (Section 4.5), QTask γ2

(55 qubits) is expected to be offloaded to the quantum cloud layer while the remaining
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QTasks can be executed at the quantum edge layers. The offloading time between two

layers is set to 0.01s. We also assume that γ3 and γ4 are to be scheduled to the same QN-

ode (QE1) to verify the correctness of the proposed space-share task allocation within a

QNode of iQuantum.

Table 4.2: QNodes Characteristics for the Hybrid Quantum Environments

Layer ID Qubit model Qubits QV CLOPS

Edge

QE1 ibm hanoi 27 64 2300
QE2 ibm auckland 27 64 2400
QE3 ibm cairo 27 32 2400
QE4 ibmq mumbai 27 128 1800
QE5 ibmq kolkata 27 128 2000

Cloud
QC1-3 ibm washington 127 64 904
QC4-6 ibm washington 127 128 850

Verification discussion

The dynamics of all events that occurred in the simulation of our verification are illus-

trated in Figure 4.10 and Table 4.4, following the similar verification approach of the

EdgeSimPy simulator study [36]. At time step T1 = 0.01s, all QTasks are scheduled at the

quantum edge layer for execution. However, as all QNodes at the edge layer can only

process QTasks up to 27 qubits, QTask γ2 (55 qubits) needs to be offloaded to the cloud

with more powerful QNodes for processing. Besides, γ1 and γ3 start the processing at

QE5 and QE1, respectively, while γ4 needs to wait at QE1 to be executed after γ3 com-

pletion (following the Space-shared scheduling). At time step T2 = 0.02s, γ2 arrived at

Table 4.3: Attributes of QTasks in the iQuantum verification derived from the MQT
Bench dataset

QTask
Circuit
depth

Initial
qubits

Mapped
qubits

Application
name

γ1 326 7 27 pricingput
γ2 74 55 127 graphstate
γ3 339 8 27 portfoliovqe
γ4 576 14 27 groundstate
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Table 4.4: Events and QNodes state during iQuantum’s verification simulation

Time step QNode ID
QTask Status

Waiting Executing Done

T1

QE1
QE5
QC1

γ4
-
-

γ3
γ1
-

-
-
-

T2

QE1
QE5
QC1

γ4
-
-

γ3
γ1
γ2

-
-
-

T3

QE1
QE5
QC1

γ4
-
-

γ3
γ1
-

-
-
γ2

T4

QE1
QE5
QC1

-
-
-

γ4
γ1
-

γ3
-
γ2

T5

QE1
QE5
QC1

-
-
-

γ4
-
-

γ3
γ1
γ2

T6

QE1
QE5
QC1

-
-
-

-
-
-

γ3, γ4
γ1
γ2

the cloud layer and is scheduled to QNode QC1 for execution for 8.72s, then finished

at time step T3 = 8.74s. After the completion of γ3 for 14.74s, γ4 starts its execution at

QNode QE1 at time step T4 = 14.75s. The remaining QTasks, γ1, and γ4, continue their

execution and finish at time step T5 = 16.32s and T6 = 39.8s, respectively. It is obvious

that all discrete events that occurred during the verification are correct and meet the

initial expectation with the given input.

4.7.2 Performance Evaluation

To validate the effectiveness of iQuantum with the proposed use cases (discussed in

Section 4.5), we further evaluate its performance and correctness of the implementation

in different large-scale scenarios.
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Figure 4.10: Dynamics of each time step involved in the verification process of iQuan-
tum. The cloud layer in time steps T4, T5, and T6 are truncated for simplicity as there are
no new events after T3
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Environment Setup

For the quantum cloud-edge system, we set up a similar infrastructure as the previ-

ous verification setting (see Figure 4.9 and Table 4.2) to further investigate the quantum

cloud-edge architecture with large-scale scenarios and use cases. For modeling large-

scale quantum task workloads, we used MQT Bench [1] and extracted features of quan-

tum circuits for 28 different quantum algorithms into four sets as shown in Table 4.5.

The original quantum circuits are mapped to IBM Quantum systems (27 qubits and 127

qubits). To simplify the circuit layer extraction, we assume that the number of circuit

layers is equivalent to the circuit depth of each QTask. We employed the Lottery-based

[259] Backend Selection algorithm for the quantum node selection and the Space-shared

policy for QNode scheduling. In the backend selection policy, we use quantum volume

(QV) and CLOPS with the same weight (0.5) to determine the number of tickets for each

QNode (i.e., a QNode has a higher QV and CLOPS will have a higher chance to be se-

lected). All workload data of each set are sent to the edge gateway for the orchestration.

The experiments are conducted on a Ubuntu 22.04 virtual machine hosted by Melbourne

Research Cloud with an 8-vCore CPU and 32 GB of RAM. Each evaluation is repeated

1,000 times, with the results discussed in the following part.

Table 4.5: Quantum Task Workload features, extracted from MQT Bench Dataset

Set
QTask
count

Circuit
Depth

Initial
qubits

Mapped
qubits

Algorithms
types

1 300 13 - 7682 10-27 27 25
2 1000 13 - 58861 10-27 27 21
3 3500 10 - 87833 7-127 127 28
4 7000 10 - 161588 7-127 27-127 28

Discussion

Figure 4.11 illustrates the peak memory (RAM) usage and average simulation time (wall-

lock time) of all scenarios on different workload datasets measured by using time com-

mand in Ubuntu. As iQuantum is an event-based simulation toolkit, its resource usage

is relatively low without simulating the quantum operation. For Set 1 and Set 2 cases, all
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Figure 4.11: Average RAM Usage (bar chart) and Total Simulation Time (line chart) of
iQuantum on four workload datasets (varying from 300 to 7,000 QTasks) over 1000
iterations.

tasks are executed at the quantum edge layer as all quantum edge nodes have sufficient

qubits for the execution. Each simulation only takes around 0.5 to 1 second and requires

from 117.8 MB (Set1) to 241.6 MB (Set2) of RAM for processing. As all tasks in Set 3 and

the majority of tasks in Set 4 (5,569 tasks) require 127 qubits, they are offloaded from the

edge layer to the cloud layer for execution during the simulation. The qubit mapping for

127-qubit tasks requires more memory, peaks at 910.95 MB of RAM, and takes about 8

seconds to process 7,000 QTasks in the hybrid scenario (Set 4). Nevertheless, the average

simulation time and resource consumption of iQuantum are lightweight to model and

evaluate different resource management policies for quantum computing environments.

Figure 4.12 illustrates the heatmap distribution of all QTask execution on different

QNodes. As we employed the lottery-based backend selection policy, which prioritizes

the selection of QNode with a higher quantum volume and CLOPS, this heatmap rein-

forces the correctness of our implementation. In order to use quantum resources more

effectively, it is important to develop an advanced resource management strategy. Users

can use iQuantum to design and evaluate more advanced backend selection and task

scheduling to optimize the resource management strategy.

Additionally, to draw insight into the simulation results to highlight the necessity of

the iQuantum toolkit, we illustrate the average results of all QTasks completion time in
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Figure 4.12: Distribution of the average number of QTasks execution per QNode in all
scenarios. (QE: quantum nodes at the edge layer, QC: quantum nodes at the cloud layer)

Figure 4.13: Total QTasks completion time (wall-lock time) and cumulative QPU times
of all QNodes in minutes required for each workload set’s completion. These figures are
average values of 1000 iterations.
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Figure 4.13. QTasks completion time indicates the time elapsed for all QNodes to finish

executing all QTasks, where different QNodes can execute different tasks at the same

time. We also measure the sum of the total execution time from all quantum nodes in

each scenario. As the space-shared scheduling policy limits a QNode can execute only

one task at a time, and each QTask in our test has a large number of circuit layers, the

total completion time, as well as the sum of QPU times, are quite considerable, espe-

cially for completing Set 3 and Set 4. It requires around 1 hour of execution in practical

environments for completing all incoming tasks where the actual QPU times are 4.2

hours (Set 3) up to 7 hours (Set 4). If we consider the cost model of quantum comput-

ing providers, such as IBM Quantum, which charges each second of quantum execution

at $1.6, the total cost for each set in the actual environment is enormous. Therefore, a

simulated environment for the design and evaluation of quantum resource management

policies is crucial. Since implementing quantum computing in practical settings can be

costly, iQuantum offers a simplified toolkit for modeling, designing, and assessing re-

source management policies without incurring massive waiting time or expenses.

4.8 Lesson Learned and Discussion

Through the development and empirical evaluation of different use cases of iQuantum,

we identify several insights that can be useful for research in quantum resource manage-

ment and developing modeling and simulation toolkits for quantum computing envi-

ronments. Performing experiments in practical environments for quantum computing is

difficult and time-consuming, mainly due to the limited and costly quantum resources.

The use of modeling tools like iQuantum is critical to accelerate research in system de-

sign and resource management. Furthermore, iQuantum can be used for educational

purposes to help practitioners better understand the quantum system operation and

performance.

In order to keep up with the latest advancements in quantum hardware and soft-

ware, the modeling and simulation toolkit must be easily expandable and support new

metrics. Quantum computing is constantly evolving, with new standards and metrics

emerging during its development. Recently, metrics like quantum volume and CLOPS
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have gained popularity, and more may be added in the future. The simulator should

be able to support modeling new metrics to reflect the comprehensive environment for

testing more advanced resource management strategies. iQuantum allows users to cus-

tomize and add more features as needed to fulfill their requirements. Users can advance

resource management to adapt to current NISQ devices with more comprehensive as-

pects, such as error rates and connectivity of qubits in QNode. A quantum node in

iQuantum can be modeled with detailed information on error rates in each qubit and

their connections, which can serve these studies. Besides, different features of quantum

circuits can be extracted from QASM files or using other quantum SDKs such as Qiskit

[195] and Cirq [196] to the customized format in iQuantum.

Currently, the vision of quantum computing at the edge layer [226, 227] is just a

theoretical concept, but it may become a reality in the near future as quantum devices

become more popular. Nevertheless, our work also illustrated a simple hybrid model of

quantum cloud-edge computing, where resources for quantum computing at the edge

are more limited compared to cloud-based quantum computers. Future research should

consider various aspects of this hybrid model, such as user mobility, service migra-

tion, and network communication. Additionally, we suggest expanding iQuantum to

include further aspects and features, such as energy consumption management, net-

work communication, and parallel processing of quantum tasks in multi-QPU quantum

computers. It is worth noting that quantum nodes do not currently use virtualization or

containerization techniques, unlike classical computing. Instead, they directly execute

quantum tasks with the support of classical drivers for circuit compilation and transpi-

lation. As a result, there is no equivalent conceptual model for virtual machines (VMs)

or containers in the quantum computing field at present. Besides, quantum datacenters

can contain nodes that are either homogeneous or heterogeneous, depending on their

physical properties and underlying technology. While quantum cloud providers offer

access to their quantum simulators, these resources are only useful for testing during

the NISQ era and not for long-term production phases. Consequently, we do not take

these simulators into account for modeling purposes.

It is also important to mention that iQuantum also supports the model of different

error rates of quantum nodes, which helps to understand quantum errors in a simu-
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lated environment and design more complex resource management strategies. How-

ever, the scope of our study does not include a comprehensive benchmarking analysis

of the impact on different error rates. Users can consider these error rates and holistic

quality metrics of a quantum system, such as quantum volume [29, 258], when design-

ing task scheduling or resource management policies. Quantum error modeling and

analysis, which delves into the specific impacts of varying error rates on quantum com-

putation, represents a significant and complex undertaking that is actively developed in

the domain of quantum hardware benchmarking [101, 257], and quantum error correc-

tion [260].

In the current landscape of quantum computing, the development of large-scale

quantum systems, exemplified by endeavors such as the IBM System Two with more

than 1,000 qubit quantum chips [261], represents a significant step forward. Future work

with iQuantum will focus on extending its capabilities to model and simulate such large-

scale quantum systems. This undertaking will involve enhancing the framework’s scal-

ability and computational efficiency to represent and manage the complexities inherent

in systems of this magnitude.

It would be beneficial to explore an improved method for measuring the number of

circuit layers in quantum tasks. In our evaluation, we assumed that the circuit depth

extracted from the original QASM files represented the circuit layers. However, it is

important to note that circuit depth is only an approximate metric, and we recommend

using a more precise method to extract the number of circuit layers in quantum tasks

to adapt to the measurement of the CLOPS metric for quantum nodes. In the study on

CLOPS metric benchmarking, a circuit layer was defined as one layer of permutation

among qubits and one layer of pair-wise random SU(4) 2-qubit unitary gates. However,

this circuit was designed specifically for CLOPS benchmarking, and a technique for es-

timating the number of circuit layers in a general circuit is still necessary. It is important

to note that our work primarily pertains to the features of the circuit dataset used for the

simulation, and the circuit layer measurement technique does not impact the core sim-

ulation logic of iQuantum. We emphasize the need for a standardized and large-scale

quantum workload dataset to investigate further the development of advanced quan-

tum resource management policies in the future. For example, the depth-1 circuit per
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second [32] metric, which is linearly scaling to CLOPS, can be considered in the future.

4.9 Summary

In this chapter, we introduce iQuantum, a lightweight and versatile toolkit for modeling

and simulation of hybrid quantum computing environments. This toolkit focuses on

creating and evaluating quantum resource management policies within the cloud-edge

continuum. We have extensively developed iQuantum from an initial case proposal to

a holistic toolkit that is flexible and adaptable for various use cases in quantum sys-

tems research. In addition to the iQuantum toolkit, we also propose a comprehensive

system model for quantum computing environments, which serves as a baseline model

for quantum entities in the hybrid cloud-edge paradigm. We demonstrate various use

cases for iQuantum, including facilitating the design and evaluation of different scenar-

ios in resource orchestration problems such as task scheduling, backend selection, and

hybrid task orchestration. Moreover, we also validate and evaluate the performance to

highlight the effectiveness of iQuantum using reliable datasets from MQT Bench [1] and

IBM Quantum. The targeted users of iQuantum will be students, educators, researchers,

and practitioners who want to comprehensively evaluate resourced management algo-

rithms in simulated environments. Such proven algorithms can then be deployed in real

quantum computing environments.

Software availability

The iQuantum toolkit with the source code and examples of all proposed use cases can

be accessed on our website (clouds.cis.unimelb.edu.au/iquantum) and Github

(github.com/Cloudslab/iQuantum) as an open-source tool under the GPL-3.0 license.

http://clouds.cis.unimelb.edu.au/iquantum
https://github.com/Cloudslab/iQuantum 




Chapter 5

Time-aware DRL-based Task
Orchestrator for Quantum Computing

This chapter proposes DRLQ, a novel Deep Reinforcement Learning (DRL) based technique for

task placement in quantum cloud computing environments, addressing the optimization of task com-

pletion time and quantum task scheduling efficiency. It leverages the Deep Q Network (DQN) ar-

chitecture, enhanced with the Rainbow DQN approach, to create a dynamic task placement strategy.

This approach is one of the first in the field of quantum cloud resource management, enabling adap-

tive learning and decision-making for quantum cloud environments and effectively optimizing task

placement based on changing conditions and resource availability. We conduct extensive experiments

using the QSimPy simulation toolkit to evaluate the performance of our method, demonstrating sub-

stantial improvements in task execution efficiency and a reduction in the need to reschedule quantum

tasks. Our results show that utilizing the DRLQ approach for task placement can significantly reduce

total quantum task completion time by 37.81% to 72.93% and prevent task rescheduling attempts

compared to other heuristic approaches.

5.1 Introduction

Quantum computing is at the forefront of technological innovation, with the potential to

drive advances in fields such as cryptography [262], finance [12], machine learning [68],

and complex chemical simulation [117]. It has the capability to solve numerous prob-

lems that are currently intractable by classical computers. Besides, the emergence of

This chapter is derived from:

• Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, “DRLQ: A Deep Reinforcement
Learning-based Task Placement for Quantum Cloud Computing”, Proceedings of the 17th IEEE In-
ternational Conference on Cloud Computing (CLOUD 2024), Shenzhen, China, July 7-13, 2024
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quantum cloud computing (as discussed in Chapter 2) represents a major advancement

in providing access to the computational capabilities of quantum computing. This inte-

gration enables users worldwide to execute quantum algorithms on remotely accessible

quantum computers, thereby overcoming the significant barriers of cost and physical

access associated with quantum hardware [51]. The quantum cloud paradigm has not

only extended the accessibility of quantum computing but has also presented new chal-

lenges and opportunities in optimizing the utilization of these cloud-based quantum

computation resources.

Figure 5.1: Overview of the system model for the task placement problem in quantum
cloud environments

Despite its significant potential, the efficient utilization of quantum cloud comput-

ing resources faces substantial challenges, particularly in the context of quantum cloud

resource orchestration. Specifically, quantum task placement, i.e., selecting an appro-

priate quantum backend or physical hardware and associated parameters for executing

quantum tasks, is crucial for the performance and reliability of quantum computations.

However, the current landscape of quantum task placement is denoted by dependence

on heuristic approaches or manually crafted policies [31]. Although practical in cer-

tain contexts, these approaches do not take full advantage of the dynamic capabilities

of quantum cloud computing environments. They lack the flexibility and adaptabil-

ity required to optimize performance in the face of ongoing advancements in quantum
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hardware and the increasing complexity of practical quantum applications. [263].

This scenario underscores the critical need for novel, adaptive techniques in resource

management capable of harnessing the potential of quantum cloud computing. Inte-

grating DRL into the quantum task placement process presents a promising approach to

address these challenges. By incorporating the principles of DRL, which is well-suited

for navigating complex and dynamic environments such as cloud-edge in the classical

domain, with several successful examples such as [264–266], a DRL-based task place-

ment strategy can potentially enhance quantum cloud resource management. As far as

we know, this study is the first attempt to apply a deep reinforcement learning-based

technique designed for the task placement problem in quantum cloud computing envi-

ronments. Our approach aims to navigate the complexities of quantum systems’ dynam-

ics, balancing performance metrics and adaptively learning the optimal task placement

policy through continuous interactions with the quantum computing environment. Our

proposed methodology leveraging Deep Q Networks (DQN) architecture and empow-

ered by Rainbow DQN approach [267], which combines advantages of different DQN

algorithms, including Double DQN, Prioritized Replay, Multi-step learning, Distribu-

tional RL, and Noisy Nets, seeks to optimize task placement in quantum cloud comput-

ing environments.

The major contributions and novelty of our work are:

• We propose one of the first applications of DRL techniques to address the task

placement problem in quantum cloud computing, leveraging the enhanced com-

bining improvement of the Rainbow DQN technique [267] for robust and adaptive

decision-making.

• Through extensive experimentation, we have shown that our DRLQ approaches

can significantly reduce the total completion time by 37.81% to 72.93% and min-

imize the need for task rescheduling compared to other popular heuristic-based

approaches.

• Our findings emphasize a possible method for tackling the problem of quantum

task placement in order to optimize resource management in quantum cloud com-

puting environments. This provides a starting point for additional thorough re-
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search that considers more quantum-specific properties, such as execution accu-

racy, quantum circuit transpilation, and quantum error rates.

The rest of this chapter is organized as follows: Section 5.2 reviews related work,

identifying gaps our research addresses. Section 5.3.1 describes the system model and

problem formulation for task placement in quantum cloud computing, then explains our

DRL model, focusing on the DQN architecture and Rainbow approach. Section 5.4 eval-

uates our method’s performance through simulations and discusses the implications of

our findings. Section 5.5 concludes the chapter by summarizing our contributions along

with future work.

5.2 Related Work

The literature on task placement in quantum cloud computing is nascent, with only few

works beginning to address the unique challenges posed by this emerging paradigm.

This section briefly reviews the existing studies, highlighting the pioneering efforts in

task placement within quantum cloud computing and the potential of DRL to innovate

in this area. We summarise several related works in the quantum cloud domain and

representative works in the classical cloud-edge domain in Table 5.1.

Table 5.1: Representative works related to our study

References
Resource Management
Problem

Environment Approach

[268] Task Placement Classical Cloud DRL
[266] Task Placement Classical Edge DRL
[31] Task Placement Quantum Cloud Heuristics
[269] Qubit allocation Quantum Cloud Heuristics
[157] Resource Allocation Quantum Network Heuristics
Our work Task Placement Quantum Cloud DRL

The traditional task placement strategies used in classical cloud computing cannot

be directly applied to the quantum context due to differences in quantum computational

tasks and resource characteristics. For example, the fundamental difference between the

characteristics of a quantum task and a classical task is their information unit, i.e., quan-

tum bits and classical bits [53]. Besides, current quantum computation processors can
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be characterized by different benchmarking metrics, such as circuit layer operations per

seconds (CLOPS) and quantum volume (QV) [32]. Meanwhile, applying deep reinforce-

ment learning (DRL) in optimizing such tasks represents a potential approach in similar

resource management problems in the classical domain [266, 268]. It offers promising

yet unexplored solutions for dynamic and efficient resource management in quantum

cloud environments.

A few studies have focused on heuristic approaches to designing quantum cloud re-

source management policies. Ravi et al. [155] analyzed quantum job characteristics of

IBM Quantum cloud systems and then proposed an adaptive job scheduling approach

based on a basic statistical analysis of historical data in their subsequent work [31].

Ngoenriang et al. [270] proposed a two-stage stochastic programming technique to allo-

cate resources for distributed quantum computing. The technique aims to minimize the

deployment cost and maximize quantum resource utilization while accounting for un-

certainties like quantum task demands and computation power. Kaewpuang et al. [269]

proposed a new method for allocating qubits in a quantum cloud that considers the

uncertainties of quantum circuit requirements and expected waiting time. The method

consists of two stages: reservation and on-demand. In the reservation stage, historical

data is used to determine the allocation of resources, while in the on-demand stage, ac-

tual requirements are considered. Cicconetti et al. [157] proposed a resource allocation

technique for distributed quantum computing, focusing on quantum network aspects.

They used the Weighted Round Robin algorithm to assign network resources based on

pre-calculated traffic flow weights. They developed a network provisioning simulator

for evaluation, showing trade-offs between fairness and time complexity.

However, these existing works do not consider the characteristics of heterogeneous

quantum computing systems and circuit-based metrics of quantum tasks when design-

ing the scheduling algorithm. Furthermore, none of the existing works leverage ma-

chine learning-based approaches for quantum task placement problems in cloud-based

environments. Our work fills this important gap and contributes to the foundational

knowledge and advancement of task placement strategies in the quantum cloud com-

puting domain.
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5.3 System Model and Problem Formulation

5.3.1 System Model

Figure 5.1 represents an overview of our system model in quantum cloud computing

environments, which is derived from our studies on the QSimPy toolkit1 for quantum

cloud resource management. Since quantum applications cannot be permanently in-

stalled in a quantum computer, classical cloud resources are required to host these ap-

plications. Additionally, these applications can be made available as a service (as our

proposed QFaaS framework in Chapter 3). Users send task requests from their local de-

vices to the classical cloud layer, where the quantum application is deployed. A corre-

sponding quantum task (QTask), which comprises single or multiple quantum circuits,

will be created for each incoming request. The broker (or scheduler) then makes a place-

ment decision for each QTask based on its requirement and the current state of available

quantum cloud computation resources.

Quantum Nodes: The set of available quantum computation nodes (QNodes) at a

quantum data center is defined asQ = q1, q2, ..., qm, where m = |Q| indicates the number

of available QNodes. We assume that each QNode has a single quantum processing unit

(QPU), reflecting the current state of available quantum computers. Each QNode has

different properties, such as qubit number (qw), quantum volume (QV) (qv) [29], circuit

layer operation per second (CLOPS) (qs) [32], supported gates (qg), and qubit topology

(qt).

Quantum Tasks: We consider each quantum task (QTask) to comprise a gate-based

quantum circuit. Thus, a set of incoming quantum tasks can be defined as Θ = {θ1, θ2, ..., θn},
where n = |Θ| is the number of QTasks. Each QTask θi has various properties, such as

qubit number (θw), circuit depth (θd), used quantum gates (θg), number of shots (θs),

qubit topology (θt), and arrival time (θa). The circuit depth (θd) of a quantum circuit is

defined as depth-1 circuit layer, where the depth of the following components can be

considered as 1: a) a single-qubit gate from native gate set, b) a measurement, c) a reset,

d) a 2-qubit gate from native gate set [32].

1https://github.com/Cloudslab/qsimpy
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5.3.2 Problem Formulation

The placement configuration of QTask θi ∈ Θ can be define as ξi = {θi, qj}where qj ∈ Q
and 1 ≤ j ≤ |Q| is the selected quantum node index. If the placement fails due to a

violation of resource constraints, such as placing a task to a QNode that does not have

enough qubits, the broker needs to do the replacement (or rescheduling) to find another

suitable QNode for the task execution.

Completion Time Model: The total completion time (or the makespan) represents

the total waiting time for each request from the submission to the completion, including

executing time and queueing time as follows:

tθi = twait
θi

+ texec
θi

(5.1)

where twait
θi

is the queuing time (from the arrival time till the execution start time) and

texec
θi

is the quantum execution time. The execution time of a quantum task depends on

the corresponding computer’s required quantum circuit layer and QPU speed (CLOPS).

Based on IBM Quantum study [32], we use depth-1 circuit layer operation per second

(D1CPS) instead of CLOPS for qs, which is used to measure the number of depth-1 cir-

cuit layers (or circuit depth) of a quantum circuit that can be executed per second. The

execution time of a QTask θi in QNode qj can be estimated as follows:

texec
θi

=
θd

i × θs
i

qs
j

(5.2)

where θd
i is the circuit depth (or number of depth-1 circuit layers), θs

i is the number of

shots to be executed, and qs
j is D1CPS of the QNode.

Problem Statement: Given a data center with heterogeneous quantum computation

nodes (QNodes) and a continuous incoming workload (QTasks), design the task place-

ment policy to select the most appropriate QNode for each incoming QTask object to

minimize the total response time of all QTasks and mitigate the replacement frequency

due to violation of the execution constraints. The objective can be defined as:

Ω(Ξ) = min
n

∑
i=1

tθi (5.3)
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s.t.

C1 : Size(θi) = 1, ∀θi ∈ Θ (5.4)

C2 : tstart
θj
≥ tstart

θh
+ tθh , ∀θh, θj ∈ Θ, h < j ≤ |Θ| (5.5)

C3 : θw
i ≤ qw

j , ∀θi ∈ Θ, qj ∈ Q (5.6)

where C1 specifies that each QTask can only be assigned to one QNode at the time

for the execution; C2 indicates that the QTask θj can only be executed in the selected

QNode after the completion of its predecessor at the same QNode (QTask θh); and C3

requires the selected QNode qj to have enough qubits for the execution of QTask θi. If

the QNode does not have enough qubits, the placement will fail, and rescheduling will

be necessary.

5.3.3 Deep Reinforcement Learning Model

Deep Reinforcement Learning (DRL) employs deep neural networks to tackle decision-

making with high-dimensional states, formulated as Markov Decision Processes (MDP)

[271]. An MDP is denoted as (S, A, P, R, γ), with S and A representing the sets of states

and actions, respectively. P defines the transition probabilities, R is the reward func-

tion, and γ ∈ [0, 1] is the discount factor, indicating the preference for future rewards.

During discrete time steps t, a DRL agent observes a state st, selects an action at from

policy π(at|st), and transitions to a new state st+1, receiving a reward rt. The agent aims

to maximize the expected return Vπ(st) = Eπ[∑t γtrt], t ∈ T, the sum of discounted

rewards obtained by following policy π from st. The policy, often a neural network, is

refined through training to optimize performance.

State Space S: A state of the agent’s observation from the quantum cloud computing

environment, which includes 1) information on all available QNodes and 2) information

on current QTasks to be placed (or scheduled).

The feature vector of m quantum nodes in Q, each quantum node has o features, at

time step t can be presented as:

FQt = { f qz
i |∀qi ∈ Q, 1 ≤ i ≤ m, 1 ≤ z ≤ o} (5.7)
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where i is the index of a quantum node, and z is the index of a quantum node’s feature.

The feature vector of the current quantum task θj in Θ, with p features at time step t

can be presented as:

F θj
t = { f θk

j |θj ∈ Θ, 1 ≤ k ≤ p} (5.8)

where k is the index of the current quantum task’s feature.

All features of quantum nodes and quantum tasks are described in Section 5.3.1.

Each QTask specification is only sent to the DRLQ agent as part of the state after its

arrival. Therefore, the State space of the system can be defined as:

S = {st|st = (FQt ,F θj
t ), ∀t ∈ T} (5.9)

Action Space A: An action can be defined as the placement of a QTask on an avail-

able quantum node. The action at at time step t is an placement of QTask θj to quantum

node qi can be defined as

at = ξi = {qi, θj}, qi ∈ Q, θj ∈ Θ (5.10)

Thus, the Action space is equivalent to the set of all available quantum nodes at the data

center:

A = Q (5.11)

Reward Function R: The main goal is to minimize the total completion of all incom-

ing tasks. Besides, we also aim to mitigate task replacement attempts (or maximise the

success rate of the task placement). To achieve these objectives, we define the reward rt

at time step t as follows:

rt =


1
tθi

× (1− ακ) if done = 1

∆× (1 + ακ) if done = 0
(5.12)

where tθi is the total completion time of QTask θi, α is the penalty factor, and κ is the

replacement count. If the QTask is successful (done = 1), the inverse value of its to-

tal completion time is assigned for the reward to encourage the policy to find a better
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placement that has a shorter total completion time to get a higher reward rt. Otherwise,

if the task execution fails for any reason, we apply a large negative value ∆ for penalty

and advise the policy to avoid similar action in the future. Besides, we also consider κ -

the number of replacements (or rescheduling attempts) of QTask θi and define a penalty

factor α when assigning the reward in order to mitigate the replacement. The penalty

factor acts as an additional discount factor when a QTask needs more than one place-

ment to be successful and also magnifies the penalty if that QTask fails multiple times.

Thus, our reward function can be used to achieve the main objective of minimizing the

total completion time and reducing the number of task replacements.

5.3.4 DRLQ Framework

Our DRLQ framework employs an enhanced deep reinforcement learning technique,

combining Deep Q-Networks (DQN) and the Rainbow approach [267] to optimize task

placement in quantum cloud computing environments.

The Deep Q-Network (DQN) algorithm, introduced by Mnih et al. [271, 272], rep-

resents a significant advancement in reinforcement learning, utilizing deep neural net-

works to approximate the action-value function Q(s, a; θ). The objective is to minimize

the loss function:

L(θ) = E

[(
r + γ max

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

(5.13)

where yi = r + γ maxa′ Q(s′, a′; θ−) defines the target for a state-action pair (s, a),

with r as the immediate reward, γ as the discount factor, s′ as the subsequent state, and

θ− denotes the parameters of a target network that is periodically updated to stabilize

the learning process. The overall process of the DRLQ framework can be represented in

the Algorithm 4.

First, we initialize the quantum cloud environment following the reinforcement learn-

ing setting. Due to the limitation of managing the practical quantum cloud environment

setup, we utilize a simulated quantum cloud environment by utilizing the QSimPy sim-

ulator and a quantum application dataset, such as MQTBench [1], for generating the

synthetic QTask data for the environment. Then, we register the environment with Ray
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Algorithm 4: DRLQ Framework for QTask Placement

1 Initialize the quantum cloud environment in QSimPy;
2 Loading dataset for the QTask generator module;
3 Register the environment with Ray;
4 Initialize replay buffer D to capacity N and priority replay configuration;
5 Initialize action-value policy Q with random weights;
6 for each hyperparameter configuration do
7 Set hyperparameters using Ray Tune;
8 for episode = 1, M do
9 Perform DQN process, defined in [272];

10 Adjust rewards and transitions for n-step;
11 Add parameter noise to network weights for exploration;
12 Update Q using a distributional approach;
13 end for
14 end for
15 Select the best configuration from Ray Tune results;

[273], a comprehensive machine-learning framework for managing the training and tun-

ing. We utilize a replay buffer to enhance learning efficiency by decoupling consecutive

training samples, thereby providing a diverse set of experiences for more robust neural

network training. The replay buffer configuration and other training hyperparameters

need to be defined for the hyperparameter tuning process. We leverage the Rainbow

DQN approaches [267] to combine all the advantages of the different DQN approaches,

such as Multi-step Learning [274], Distributional RL [275], Prioritized Replay [276], and

Noisy Nets [277]. These enhancements of DQN can collectively improve the training

efficiency and effectiveness in quantum task placement, offering a potential approach to

learning in the complex and dynamic environments of quantum cloud computing. Fi-

nally, we determine the best hyperparameter configuration based on the tuning process

using Ray Tune [278].
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5.4 Performance Evaluation

5.4.1 Environment Setup

To evaluate the performance of our DRLQ technique, we set up a simulated environment

that reflects the actual quantum cloud environment due to current limitations on access-

ing and managing a quantum data center. We use QSimPy, a learning-centric framework

derived from the iQuantum toolkit (see Chapter 4), to create the quantum cloud envi-

ronment. All experiments are conducted on a computation instance with 16 vCPUs and

64GB of RAM at the Melbourne Research Cloud.

We model a quantum data center with 10 heterogeneous quantum nodes, ranging

from 16 qubits to 127 qubits, using quantum benchmarking metrics [32] from IBM Quan-

tum and backend instances in Qiskit. The modeled quantum nodes included ibm sherbrooke,

ibm washington, ibm brisbane, ibm osaka, ibm nazca, ibm kyoto, ibm cusco, ibm kolkata, ibm hanoi,

ibm guadalupe. We used Qiskit [279] for the transpilation of circuits in incoming QTasks

to the selected QNode and extracted the circuit metrics after transpilation to mimic the

process when a quantum circuit reaches the quantum node for further execution. To

simulate stochastic incoming quantum tasks with metrics from actual quantum appli-

cations, we selected 12 quantum applications from the MQTBench dataset [1], which

contains quantum circuits in QASM files ranging from 2 to 50 qubits each. The selected

quantum applications from the MQTBench dataset include:

1. Amplitude Estimation (AE)

2. Deutsch-Jozsa algorithm

3. Greenberger–Horne–Zeilinger (GHZ) state

4. Quantum Fourier Transformation

5. Entangled Quantum Fourier Transformation

6. Quantum Neural Network (QNN)

7. Quantum Phase Estimation (QPE) exact
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8. Quantum Phase Estimation (QPE) inexact

9. Random circuits

10. Real Amplitudes ansatz with Random Parameters

11. Efficient SU2 ansatz with Random Parameters

12. Two Local ansatz with random parameters

The number of shots is set to 1024 by default. We randomly select QTasks for each

episode in the reinforcement learning process from the synthetic QTask dataset. The

QTask arrival times were generated following a Poisson distribution.

After setting up the Gymnasium-based environment for the quantum cloud, we

used Ray RLlib [280], an industry-grade reinforcement learning framework, to imple-

ment the proposed method of DRLQ and several baseline algorithms for performance

comparison. We evaluated the performance of DRLQ against other popular heuristic

approaches, including:

• Greedy: QTasks are greedily assigned to the QNode with the shortest waiting time,

similar to an approach in our QFaaS framework (see Chapter 3). If these tasks

fail, they are assigned to the most powerful QNode (i.e., the one with the largest

number of qubits).

• Round Robin: QTasks are assigned to QNodes in a cyclic order, ensuring a balanced

distribution of tasks across all available QNodes.

• Random: QTasks are randomly assigned to QNodes.

5.4.2 Evaluation and Discussion

We used a similar evaluation approach following other DRL-based task scheduling works

in classical computing, such as [266, 281], to evaluate the performance of our framework

using reward values after 100 training iterations, which involves 100,000 time steps. We

conducted extensive experiments and used Ray Tune [278] to optimize hyperparame-

ters through the grid search method. The results of the best configuration of DRLQ are

shown in Figure 5.2.
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Figure 5.2: Episode reward means and episode lengths during the training of the DRLQ
policy over 100,000 time steps, total training time is 8.34 hours. Each episode consists
of 60 random QTasks that arrive randomly within a 1-minute time window. The tuned
hyperparameters are set as follows: learning rate (lr) = 0.01, number of atoms = 10, train
batch size = 180, n step = 3, v min = -10, v max = 10, penalty (∆) = -10, and penalty factor
(α) = 0.1.

Our main objective is to minimize the total completion time and the number of task

rescheduling (or replacement) attempts. Figure 5.2 clearly demonstrates the efficient

learning process of the DRLQ method. As the reward is inversely proportional to the

total completion time, the upward trend in the reward indicates a reduction in total

completion time during the training episodes. The reward continuously increases after

the first 20 training iterations, reaching convergence after 90 training iterations (each

iteration consists of 1,000 time steps). Simultaneously, the episode length significantly

reduces and converges around 60, which is the minimum length of an episode, after the

first 25 training iterations. We then exported the trained policy after 100 training itera-

tions for evaluation on different QTask workload datasets to compare the effectiveness

of DRLQ against other heuristic approaches.

Figure 5.3a compares DRLQ with other baseline techniques for QTask placements,

considering the total completion time of all QTasks over 100 episodes, each consisting

of 60 random incoming QTasks different from the training set of DRLQ. The average

total completion times of all QTasks in each episode after 100 evaluation episodes across
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(a) Total completion time of all QTasks in each episode during the evaluation.

(b) Average values of total completion time of all QTasks
over 100 evaluation episodes.

Figure 5.3: Total completion times of all QTask over 100 evaluation episodes among
DRLQ and other heuristic approaches.
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DRLQ and other baselines are shown in Figure 5.3b. Our evaluation results indicate that

the DRLQ algorithm significantly improves efficiency by minimizing the total comple-

tion time. It achieves a 37.81% reduction in the total completion time compared to the

Greedy algorithm, a 72.93% reduction compared to the Random approach, and a 70.71%

reduction compared to the Round Robin algorithm over 100 evaluation episodes.

We also evaluate the performance of DRLQ by considering the number of task reschedul-

ing attempts per episode. Figure 5.4 shows the average number of task rescheduling

attempts over 100 evaluation episodes for all approaches.

Figure 5.4: Average number of task rescheduling attempts after 100 evaluation episodes
of DRLQ and other approaches

The results show that our DRLQ approach significantly outperforms other methods

in mitigating task rescheduling attempts. Specifically, DRLQ achieves zero reschedul-

ing attempts, which is a substantial improvement over the Greedy, Random, and Round

Robin approaches, with average rescheduling attempts of 26.95, 7.88, and 8.11, respec-

tively. These improvements are especially important in quantum cloud computing en-

vironments, where minimizing task completion time is crucial due to the high costs of

quantum resources and the inherent variability of quantum computations.
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5.5 Summary

In this chapter, we have explored the effectiveness and potential of utilizing a deep re-

inforcement learning approach in proposing a novel DRLQ framework for task place-

ment in quantum cloud computing environments. Our results showcase the significant

improvement of the DRLQ technique in quantum task placement compared to other

heuristic approaches. It highlights the potential of using a DRL-based approach for ro-

bust quantum cloud resource management. Our work is one of the first studies on the

resource management problem of quantum cloud computing, which requires more at-

tention from the research community in the quantum cloud domain.

Based on the foundation and insights gained in this chapter, we further refine our

deep reinforcement learning methodology and introduce a more comprehensive ap-

proach for estimating quantum execution fidelity and execution time. These enhance-

ments are designed to better reflect the characteristics of quantum computing environ-

ments in the NISQ era, and will be discussed in detail in Chapter 6.





Chapter 6

Fidelity-aware DRL-based Task
Orchestrator for Quantum Computing

This chapter proposes QFOR, a Quantum Fidelity-aware Orchestration of tasks across heteroge-

neous quantum nodes in cloud-based environments using Deep Reinforcement learning. We model

the quantum task orchestration as a Markov Decision Process and employ the Proximal Policy Opti-

mization algorithm to learn adaptive scheduling policies, using IBM quantum processor calibration

data for noise-aware performance estimation. Our configurable framework balances overall quan-

tum task execution fidelity and time, enabling adaptation to different operational priorities. Ex-

tensive evaluation demonstrates that QFOR is adaptive and achieves significant performance with

29.5-84% improvements in relative fidelity performance over heuristic baselines. Furthermore, it

maintains comparable quantum execution times, contributing to cost-efficient use of quantum com-

putation resources.

6.1 Introduction

The rapid advancement of quantum computing promises to solve computationally in-

tractable problems across critical technology domains, including cryptography [282],

drug discovery [41], optimization [211], and machine learning [6]. However, given

the significant challenges associated with operating physical quantum hardware, such

as stringent environmental requirements and high costs, Quantum Cloud Computing

This chapter is derived from:

• Hoa T. Nguyen, Muhammad Usman, and Rajkumar Buyya, ”QFOR: A Fidelity-aware Orchestrator
for Quantum Computing Environments using Deep Reinforcement Learning”, submitted to the ACM
Transactions on Quantum Computing (TQC), August 2025 (Under Review)
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(QCC) has emerged as an access paradigm (see Chapter 2). QCC platforms, offered

by major providers like IBM Quantum, Amazon Braket, Google Cloud, and Microsoft

Azure, democratize access to Quantum Processing Units (QPUs) in a Quantum-as-a-

Service (QaaS) model. This allows users to execute quantum applications remotely with-

out the need for on-premise hardware.

Notably, current QPUs are not fully fault-tolerant processors and operate within the

constraints of the Noisy Intermediate-Scale Quantum (NISQ) era [15], and executing

quantum applications on them is a hybrid process, involving both classical and quan-

tum execution. For instance, Variational Quantum Algorithms (VQAs) necessitate a

classical optimisation step for convergence [223]. Even fully quantum algorithms re-

quire classical transpilation to be compatible with the qubit topology and native gate set

of the targeted QPU. Furthermore, realizing quantum advantage requires seamless inte-

gration with classical high-performance computing (HPC) infrastructure to form hybrid

quantum-classical systems [283, 284]. These hybrid systems leverage classical HPC re-

sources for pre-processing, optimization, and post-processing while utilizing quantum

processing units (QPUs) for quantum-specific computations. Figure 6.1 presents a high-

level architecture of a quantum-classical hybrid cloud system, wherein user requests are

routed via an API gateway to a corresponding service or application deployment at the

middleware layer. Classical tasks for pre-processing and post-processing are queued

and dispatched to CPUs and GPUs, while quantum tasks are orchestrated by a quan-

tum task orchestrator component (for example, our proposed QFOR orchestrator in this

work), which manages quantum processing units (QPUs) through dedicated queues and

APIs.

In these hybrid quantum cloud computing environments, effective quantum task

orchestration is crucial for three key reasons. First, quantum computation resources ex-

hibit extreme scarcity as quantum hardware development is still in its early stages. Sec-

ond, quantum resources incur costs significantly higher than equivalent classical com-

pute time, making efficient utilization economically critical. For example, each minute of

quantum execution on IBM Quantum hardware costs $96 USD1, while each hour of IonQ

1https://www.ibm.com/quantum/pricing
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Figure 6.1: High-level view of a Quantum-HPC system in the cloud-based environment.
The QFOR Orchestrator (proposed in this work) manages quantum task scheduling and
coordination across quantum processing units (QPUs).

device reservation on Amazon Braket costs $7,000 USD2 (as of June 2025). Third, quan-

tum fidelity degradation due to poor scheduling can invalidate entire hybrid compu-

tations, regardless of classical processing quality [25, 285]. Current quantum hardware

exhibits significant variability across multiple dimensions that directly impact quantum

task execution. Multiple QPU technologies exist, including superconducting qubits,

trapped ions, and neutral atoms, each with distinct performance and noise character-

istics. Even within the same technology, different QPU models possess varied qubit

layouts, native gate sets, and qubit connectivity. Architecturally, devices differ in qubit

connectivity constraints how quantum circuits can be efficiently mapped and executed.

Additionally, gate durations and error rates vary not only between devices but also over

time due to calibration cycles and environmental factors [101, 286]. Device availability is

another critical consideration, as queue times can fluctuate based on user demand and

system maintenance [31]. These factors collectively introduce substantial heterogeneity

and uncertainty into the quantum cloud environment. As a result, effective orchestra-

tion must be both fidelity-aware, dynamically select quantum computation nodes that

2https://aws.amazon.com/braket/pricing/
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optimize for execution reliability while maintaining efficiency with reasonable execu-

tion time. This orchestration approach is essential for harnessing the potential of quan-

tum cloud resources and ensuring consistent, high-quality results and cost efficiency for

users.

Despite the increasing interest in QCC, existing research in quantum cloud resource

management exhibits several critical gaps, particularly concerning heterogeneous quan-

tum computation resources and noise-aware execution fidelity. Traditional resource

management approaches fall into two categories, both with critical limitations. Tradi-

tional HPC scheduling algorithms excel at managing classical computation resources

but can struggle to account for quantum-specific constraints such as fidelity optimiza-

tion, decoherence, and calibration-dependent performance [284, 287]. Conversely, quantum-

specific heuristics [31, 288] are inherently limited in their ability to adapt to the dynamic

and uncertain nature of quantum cloud environments. Recent AI-driven approaches,

such as deep reinforcement learning (DRL), have shown promise for addressing this

problem with several successful cases in the classical cloud-edge [266, 281] and high-

performance computing domain [265, 289], as it is well-suited for sequential decision-

making in environments with incomplete information and stochastic dynamics. How-

ever, DRL approaches for quantum cloud orchestration remain limited in scope. Existing

works mainly focused on completion time and device allocation [160] or overall fidelity

of the targeted quantum device [290]. To our knowledge, no existing work considers

the trade-off between circuit execution fidelity, time, and complexity of quantum tasks

using DRL-based approaches with real quantum circuit workload.

Furthermore, as quantum cloud resources are scarce and limited, designing and eval-

uating resource management in a practical environment is extremely challenging. There-

fore, simulation frameworks for modeling and simulating quantum cloud computing

environments are essential for this research area. However, existing approaches mainly

focus on high-level metrics for the performance estimation of quantum tasks, such as

quantum volume [29] and circuit layer operation per second (CLOPS) [32]. Although

this approach is promising, it lacks the adaptability to different structures of quantum

circuits and their transpilation to different qubit topologies of quantum hardware. In-

deed, specific information on gate errors and durations of individual qubits in quantum
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hardware can be used to enhance the estimation process. Thus, there is a clear need

for resource estimation that systematically explores this fidelity-runtime tradeoff to aid

optimal quantum resource orchestration.

To address the above-mentioned challenges, we propose QFOR, a Quantum Fidelity-

aware Orchestrator using a Deep Reinforcement learning-based approach that opti-

mizes the overall performance of task orchestration in quantum cloud environments.

QFOR models quantum task placement as a Markov Decision Process and employs

Proximal Policy Optimization (PPO) [291] to learn adaptive policies that balance overall

execution fidelity and time of quantum tasks.

The major contributions and novelty of our work are:

• We propose a novel deep reinforcement learning-based task orchestration frame-

work for quantum computing in cloud-based environments. Our method consid-

ers the critical trade-off between execution fidelity and quantum execution time,

with a primary focus on maximizing fidelity-aware overall performance.

• Our approach employs a systematic quantum task execution and fidelity estima-

tors, and mimics the execution of noisy devices based on calibration data and ac-

tual quantum circuit properties, enabling more rigorous quantum cloud modeling

and simulation of quantum hardware behavior and improved orchestration deci-

sions.

• We provide configurable orchestration objectives that balance execution fidelity

and latency, accounting for circuit complexity and task priority. Extensive eval-

uation demonstrates that QFOR is flexible and adaptive, achieving 29.5–84% im-

provements in relative fidelity compared to heuristic baselines, while maintaining

comparable quantum execution times, thus supporting cost-efficient quantum re-

source usage.

The rest of the chapter is organized as follows: Section 6.2 reviews existing works re-

lated to our study. Section 6.3 describes the system model and formulates the problems

of quantum task orchestration in heterogeneous quantum cloud computing environ-

ments. We provide details of the methodology and design of the QFOR framework in

Section 6.4. Then, Section 6.5 describes the evaluation study of our proposed framework,
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followed by and further discussion on the results. Finally, we conclude the chapter with

key insights, limitations, and future directions in Section 6.6.

6.2 Related Work

In this section, we review existing literature on quantum resource management and

orchestration, categorizing approaches by their methodology and highlighting critical

gaps that our work addresses. Table 6.1 provides a comprehensive comparison across

key technical dimensions.

Table 6.1: Overall comparison of related works on quantum cloud task orchestration
and resource management problem.

Works
Quantum Tasks Quantum Nodes

Method
Optimization config

EnvReal
Circuit

Dataset/Task
Generator

Noise
Aware Qubit Fidelity Time Weighted

QFaaS (Chapter 3) ✓ Qiskit ✓ 7-127 H G# G# ✗ E
Ravi et al. [31] ✓ Qiskit ✓ 1-65 H ✓ G# ✗ S
iQuantum (Chapter 4) ✓ MQTBench ✗ 27-127 H ✗ ✓ ✗ S
Qonductor [25] ✓ MQTBench ✓ 27 H ✓ G# ✗ E
QuSplit [288] ✓ Qiskit (VQE) ✓ N/A H ✓ ✗ ✗ S
DRLQ (Chapter 5) ✓ MQTBench ✗ 27-127 DRL ✗ ✓ ✗ S
Moirai [160] ✓ Qiskit ✗ 5-7 DRL ✗ ✓ ✗ E
Luo et al. [290] ✗ Random data ✓ 127 DRL ✓ G# ✗ S
QFOR ✓ MQTBench ✓ 27-127 DRL ✓ ✓ ✓ E

Notes. H: Heuristic, DRL: Deep Reinforcement Learning, N/A: Not available, G#: Partially Addressed/De-
scribed, Env: Environments, E: Emulation with real quantum circuit compilation and execution, S: Simula-
tion with circuit feature or synthetic data

Early work in quantum cloud orchestration have primarily relied on heuristic ap-

proaches that extend classical scheduling paradigms to quantum environments. Ravi

et al. [31] introduced an adaptive job and resource management for quantum clouds,

focusing on fidelity optimization through device selection. However, their approach

relies on predetermined heuristics and statistical analysis that can struggle to adapt to

temporal variations in quantum device performance. QFaaS (proposed in Chapter 3) is

one of the first serverless quantum computing framework, establishing a Function-as-

a-Service model for quantum task execution. While QFaaS demonstrates practical hy-

brid quantum-classical integration across multiple cloud providers, it employs primar-

ily heuristic models for resource allocation decisions based on execution priority (speed

and accuracy) using Quantum Volume (QV) [29], CLOPS [32], and queue metrics with-
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out considering dynamic fidelity-runtime tradeoffs. Pioneering the discrete-event quan-

tum cloud modeling and simulation, iQuantum (see Chapter 4) provides comprehensive

toolkits for quantum cloud resource management design and evaluation, but has not

fully considered noise-aware modeling. This gap is also one of the key motivations for

QFOR to address, providing an emulation approach to mimic the noisy-quantum hard-

ware in practical quantum cloud environments. Qonductor [25] represents one of the

most sophisticated heuristic frameworks, offering a hybrid quantum-classical orches-

tration. Despite introducing important concepts like hybrid resource estimation, Qon-

ductor relies on heuristic scheduling policies and a prediction model based on historical

data that can be challenging to adapt to dynamic quantum environments. Focusing only

on quantum optimization applications, QuSplit [288] focuses on optimizing fidelity and

throughput through job splitting using a genetic algorithm. However, the limitation

of heuristic approaches lies in their ability to adapt to the dynamic and stochastic na-

ture of quantum cloud environments. As quantum hardware and the characteristics of

quantum tasks evolve, static scheduling policies become harder to adapt to, requiring

adaptive learning-based approaches.

Recent research has begun exploring deep reinforcement learning as a solution to

quantum orchestration challenges, demonstrating significant improvements over heuris-

tic baselines while revealing important limitations. Our DRLQ framework (see Chapter

5) pioneered the use of deep reinforcement learning [267] for quantum task scheduling,

demonstrating significant improvements over heuristic baselines in terms of completion

time. Similarly, Moirai [160] employed policy gradient methods within the OpenWhisk

framework to schedule quantum circuits on small-scale quantum devices. However,

neither DRLQ nor Moirai incorporated comprehensive noise-awareness in the decision-

making process. Recently, Luo et al. [290] employed a DRL approach in a simulated en-

vironment to maximize targeted device fidelity on different 127-qubit quantum nodes.

However, their work relied on CLOPS-based estimation for quantum execution with

synthetic random data for the training and evaluation, rather than real quantum cir-

cuits, and did not consider the execution time factor in the DRL policy design to fully

address the tradeoff between time and fidelity of task execution.

As summarized in Table 6.1, our work addresses several limitations in the exist-
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ing approaches. Existing approaches lack comprehensive performance modeling that

integrates circuit features, device calibration data, and noise-aware fidelity and execu-

tion time estimation for improving scheduling decisions. Besides, current DRL-based

methods operate on limited-scale systems or synthetic random data in simulated en-

vironments rather than emulating the execution with quantum circuit compilation and

execution, which have limitations in practical applicability to quantum cloud environ-

ments. Our work provides a comprehensive, deep reinforcement learning-based frame-

work that considers noise-aware performance modeling using device calibration data

and configurable optimization with evaluation on realistic quantum circuit workloads

from a well-known quantum circuit dataset (MQTBench [1]). Our work aims to con-

tribute valuable approaches and insights for future works in quantum cloud orches-

tration, enabling learning-driven resource management that adapts to the dynamic, het-

erogeneous nature of NISQ-era quantum computing environments while optimizing for

practical deployment requirements.

6.3 System Model and Problem Formulation

This section presents our system model and problem formulation for quantum cloud

orchestration, focusing on fidelity-aware performance metrics.

6.3.1 Quantum Task Model

In quantum cloud environments, a quantum task (QTask) represents the unit of quan-

tum computation requiring adaptive resource orchestration to optimise the performance.

A QTask can comprise one or multiple quantum circuits that need to be executed with

specific qubit requirements, gate operations, and circuit depth. In the context of this

work, we consider each QTask as a single independent quantum circuit. These QTasks

can encompass different quantum algorithms, each with distinct characteristics.

Let Γ = {τ1, τ2, . . . , τN} denote a sequence of quantum tasks arriving for execution.
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Each task τi ∈ Γ is characterized by the following properties:

τi =
(

ai, qi, di, si, g(1)i , g(2)i , Ci

)
(6.1)

where:

• ai ∈ R≥0: arrival time of the task into the system.

• qi ∈N: number of qubits required for execution.

• di ∈N: circuit depth, i.e., the longest gate dependency path.

• si ∈N: number of shots (i.e., repetition of the execution)

• g(1)i ∈N: total number of single-qubit gates.

• g(2)i ∈N: total number of two-qubit gates.

• Ci: the quantum circuit representation as a Directed Acyclic Graph (DAG).

Each circuit Ci is modeled as a DAG Gi = (Vi, Ei), where Vi is the set of all quantum

operations (gates), and Ei ⊆ Vi×Vi represents directed edges indicating gate dependen-

cies.

Figure 6.2: Example of an initial quantum circuit and its transpilation, qubit mapping to
a 27-qubit QNode (ibmq hanoi), and DAG of the transpiled circuit with the critical path
illustration.

Example of a quantum circuit within a QTask and its transpilation, mapping and

DAG representation are illustrated in Figure 6.2. The DAG representation enables crit-
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ical path analysis for the estimation of QTask execution time and the execution fidelity

based on the calibration data of QNodes. Based on the current state of typical quantum

cloud environments as previously discussed in Chapter 2, we assume each task requires

exclusive access to a set of qubits on a quantum processor and no preemption or inter-

ruption occurs during task execution. The orchestration focuses exclusively on quantum

circuit execution, which dominates in terms of resource sensitivity compared to classical

resources.

6.3.2 Quantum Computation Resource Model

The quantum cloud infrastructure consists of heterogeneous quantum nodes (QNodes)

with one or multiple quantum processing units (QPUs) with distinct performance char-

acteristics that directly impact scheduling decisions. In the context of this work, we

consider a single QPU per QNode to reflect the current state of available quantum hard-

ware. Each QNode exhibits unique hardware specifications and properties, which must

be taken into account during scheduling to achieve reliable and efficient quantum task

execution.

Let the set of quantum resources be denoted by: N = {n1, n2, . . . , nM}, where each

node nj ∈ N is defined as:

nj =
(
qj,Gj,Dj, Ej, ρj(t)

)
(6.2)

where:

• qj = |Qj| ∈ N: number of physical qubits and Qj is the set of all available qubits

at QNode nj.

• Gj = (Vj, Ej) is the qubit connectivity graph, where Vj is the set of all qubits and Ej

is the set of all edges connecting these qubits.

• Dj : Oj ×Qj → R>0 maps available gates Oj and qubits Qj to corresponding gate

execution durations

• Ej : Oj ×Qj → [0, 1] maps all available gates Oj and qubits Qj to corresponding

error probabilities.
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• ρj(t): other dynamic state of the QNode at time t, such as next available time and

queuing information.

This abstraction allows us to capture both static and time-dependent dynamics of

each quantum node. These features are critical for orchestrator decisions in dynamic

workload settings and heterogeneous quantum cloud environments.

6.3.3 Fidelity-aware Orchestration Performance Model

For quantum cloud orchestration in the NISQ era, there are two critical metrics that in-

dicate the performance of the orchestration decision: execution fidelity and time. First,

execution fidelity can be considered as one of the most critical factors. Quantum exe-

cution exhibits high sensitivity to noise, where small fidelity degradations can render

results meaningless regardless of execution speed [32]. Poor device selection as well as

poor selection of qubits on the targeted device can reduce algorithmic success proba-

bility, necessitating multiple re-executions that far exceed any time savings from faster

scheduling. Second, quantum task execution time in the quantum node is also critical,

as quantum resources are scarce and extremely expensive. Besides, quantum states de-

cay exponentially with time, making execution time a fundamental physical constraint

rather than merely an optimization preference [292]. Longer execution sequences suf-

fer increased error accumulation, creating a direct coupling between execution time and

fidelity. Therefore, we define the orchestration performance metric that mainly focuses

on the fidelity of the execution, while maintaining the execution time and considering

the complexity of the task that needs to be executed, as well as how good it compares to

other available decisions.

Fidelity Performance Score

The execution fidelity performance score Fi,j is the key objective in this work and cap-

tures the comprehensive quality of executing task τi on node nj through three comple-

mentary components:

For task τi assigned to node nj, the base execution fidelity Fi,j is approximately esti-
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mated as:

Fi,j = ∏
g∈C ′i

(
1− Ej(g, q⃗g)

)
(6.3)

where C ′i represents the transpiled circuit and q⃗g are the assigned physical qubits.

The base fidelity score Rr f normalizes this against expected fidelity performance F
′
i,j

based on the average gate errors of all available quantum nodes, preventing hardware-

specific biases while rewarding above-expected performance.

Rr f =
Fi,j

F′i,j
(6.4)

In quantum cloud environments, simpler circuits (i.e., those with shallow depth and

fewer gates) tend to achieve higher fidelity due to reduced exposure to noise. As a

result, an orchestration policy that solely maximizes fidelity may develop a bias toward

such circuits, systematically deprioritizing more complex tasks. To address this issue,

we introduce a small complexity bonus Rcb, which encourages the orchestrator to also

consider more complex circuits:

Rcb = wd ·
di

Dmax
+ wg ·∑

gi

Gmax
(6.5)

where di is circuit depth, ∑ gi is total gate count in the circuit of the scheduled QTask, wd

and wg are adjustable weights, and Dmax, Gmax are normalization bounds for the maxi-

mum depth and gates of the circuit. This ensures fairness and task diversity within the

orchestration policy while remaining computationally efficient and easy to integrate into

learning-based decision frameworks. We also introduce a ranking bonus Rrb that cap-

tures the relative quality of selecting a specific quantum node compared to all available

options for a given task to ensure that the orchestration policy not only aims for high

absolute fidelity but also makes competitively optimal decisions based on the current

system state. It is defined as:

Rrb =
Fi,j − Fworst

Fbest − Fworst
(6.6)

where Fbest and Fworst represent the highest and lowest achievable fidelity across all

nodes for task τi.
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The comprehensive execution fidelity performance score (or relative fidelity) com-

bines these components:

Fi,j = α1 · Rr f + α2 · Rcb + α3 · Rrb (6.7)

where α1, α2, and α3 are configurable weights and were set by default, and α1 = 0.8, α2 =

α3 = 0.1, emphasizing the key focus of our orchestration on execution fidelity while

maintaining circuit complexity and decision ranking awareness. By aggregating these

complementary components,Fi,j provides a robust fidelity-based performance measure.

It supports fair and adaptive orchestration across diverse workloads and heterogeneous

quantum hardware, and serves as a principled reward signal in reinforcement learning-

based policy optimization of this work.

Time Penalty Score

The time penalty score Ti,j captures the temporal cost of quantum task execution, en-

compassing both waiting and actual quantum execution time. For task τi assigned to

node nj, the quantum execution time is estimated by analyzing the critical path of the

transpiled circuit:

Texec
i,j = si · ∑

g∈CP(C ′i )
Dj(g, q⃗g) (6.8)

where CP(C ′i ) represents the critical path (longest execution sequence) of the transpiled

circuit, and Dj(g, q⃗g) is the gate execution duration along the critical path, si is the num-

ber of shots (execution iterations). An example of the longest path of a quantum circuit

is illustrated in Figure 6.2. The total completion time includes queuing delays of QTask

until it can be executed at the targeted QNode Ti,j = Twait
i,j + Texec

i,j and is normalized

based on the maximum completion time bound to enable stable policy training.

6.3.4 Problem Formulation

Given the fidelity performance score Fi,j and time penalty score Ti,j defined above, we

formulate the quantum cloud orchestration problem as a sequential decision-making
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process that maximizes the combined orchestration performance across all quantum

tasks.

The quantum cloud orchestration problem can be formally stated as follows: Given

a sequence of quantum tasks Γ = {τ1, τ2, . . . , τN} arriving dynamically in a quantum

cloud environment with heterogeneous quantum nodes N = {n1, n2, . . . , nM}, find an

optimal orchestration policy π : Γ → N that assigns each task τi to an appropriate

quantum node nj = π(τi) to maximize the overall orchestration performance. For each

assignment decision π(τi), the overall orchestration performance is quantified by com-

bining the fidelity performance score and time penalty score, with a negative value of

time score indicating the secondary goal to minimize the time penalty:

Pi,π(τi) = Fi,π(τi) − β · Ti,π(τi) (6.9)

where Fi,π(τi) represents the relative fidelity performance score, β is the configurable

time penalty weight and Ti,π(τi) represents the time penalty, ensuring that higher fidelity

and lower execution time both contribute positively to the overall performance score.

The primary optimization objective is to maximize the cumulative orchestration perfor-

mance across all quantum tasks can be defined as follows:

max
π

N

∑
i=1
Pi,π(τi) = max

π

N

∑
i=1

[
Fi,π(τi) − β · Ti,π(τi)

]
(6.10)

subject to:

C1 : Size(π(τi)) = 1, ∀π(τi) ∈ {1, . . . , M} (6.11)

C2 : qτi ≤ qπ(τi), ∀i ∈ {1, . . . , N} (6.12)

C3 : Cτi ↪→ Gπ(τi), ∀i ∈ {1, . . . , N} (6.13)

where N is the total number of quantum nodes, M is the total number of tasks that

need to be scheduled. C1 shows that each QTask will be allocated to exactly one QN-

ode at a time, C2 indicates that the number of qubits in the targeted QNode needs to

be larger than or equal to the number of qubits required by the allocated QTask, and

C3 implies that the quantum circuit of the QTask can be mapped to the QNode through
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the transpilation process. This optimization problem exhibits several challenges. First,

quantum node characteristics (Dj, Ej) vary with calibration cycles, and queue states ρj(t)

change with task arrivals and completions, requiring adaptive decision-making capabil-

ities. Second, the discrete assignment decisions combined with non-linear relationships

between circuit characteristics and performance metrics create a combinatorial optimiza-

tion problem. Furthermore, the sequential arrival of quantum tasks with unknown fu-

ture characteristics necessitates an adaptive optimization without complete future in-

formation. The tension between fidelity maximization and time minimization requires

sophisticated balancing strategies that adapt to different priorities.

Given these complexities, traditional heuristic approaches cannot effectively navi-

gate the dynamic trade-offs inherent in quantum cloud orchestration. Therefore, we pro-

pose a deep reinforcement learning approach that models this problem as a Markov De-

cision Process, enabling the learning of adaptive orchestration policies that can balance

fidelity and time objectives with a set of configurable weights that can be adjusted based

on the priority of the orchestration. The sequential nature of the decision-making pro-

cess, combined with the need for adaptive policy learning, makes reinforcement learn-

ing particularly well-suited for this orchestration challenge, which is widely used effec-

tively for resource management in the classical computing environments [266, 268, 281].

6.4 QFOR Framework and Technique

6.4.1 Main components and Design

The QFOR framework implements an adaptive orchestration system that applies deep

reinforcement learning to optimize quantum task placement in heterogeneous cloud

environments. Figure 6.3 illustrates the framework architecture, consisting of six in-

tegrated components that collectively enable adaptive fidelity-aware orchestration deci-

sions.

1. QTask Generator and Dataset: The QTask Generator serves as the workload inter-

face, consuming quantum circuit representations from standardized datasets (for

example, MQTBench [1]) in OpenQASM format [293]. This component simulates
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Figure 6.3: Overview of the main components of the QFOR framework

realistic quantum cloud workloads by generating tasks with diverse complexity

characteristics—varying qubit requirements, circuit depths, and algorithmic pat-

terns. The generator also supports configurable quantum task arrival patterns to

model different cloud workload scenarios.

2. QTask Feature Extractor: This component analyzes quantum circuits to extract criti-

cal features, including qubit count, circuit depth, gate statistics (single-qubit, two-

qubit gate, measurement counts), and circuit structure. These features are nor-

malized and encoded into a concise representation that characterizes the compu-

tational requirements and complexity of each QTask, enabling the DRL agent to

make informed scheduling decisions based on circuit characteristics.

3. Deep Reinforcement Learning Agent: The key component that implements the DRL-

based decision-making policy. It observes the current state of quantum tasks and

available quantum nodes, processes this information through a DRL agent, and

produces orchestration decisions that assign tasks to appropriate quantum nodes.

The orchestrator continuously learns from execution outcomes through the de-

fined reward function that optimizes the overall performance of the orchestration

decision.

4. Heterogeneous Quantum Cloud Environment: The framework extends the capabili-
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ties of QSimPy3 to models of heterogeneous quantum computing resources (QN-

odes) with varying capabilities, including qubit counts, connectivity graphs, gate

durations, and error rates. Each node maintains dynamic state information such

as queue length and availability, enabling realistic simulation of quantum cloud

environments.

5. Circuit Transpiler: This component transforms logical quantum circuits into hardware-

specific implementations optimized for the target quantum node’s topology and

native gate set. The transpilation process is guided by the orchestration decision

and affects both execution time and fidelity. We utilized the Qiskit Transpiler4 with

optimisation level 3 as the default transpilation mode.

6. QTask Executor: This component mimics the execution of a quantum task on noisy

quantum nodes by analysing the transpiled quantum circuit and estimating ex-

ecution fidelity and time metrics based on the system model defined in Section

6.3 and the calibration snapshot data of IBM Quantum systems (with Qiskit Fake

Provider5).

The framework provides a learning system loop where the DRL agent observes en-

vironment states, selects quantum node assignments, receives performance feedback

through the reward obtained, and iteratively improves scheduling policies. The integra-

tion of realistic transpilation, noise-aware execution modeling, and configurable perfor-

mance objectives enables the system to learn nuanced scheduling strategies that adapt

to varying operational priorities while maintaining practical applicability to practical

quantum cloud systems.

This modular architecture supports extensibility for different quantum hardware

backends, alternative circuit datasets, and enhanced performance models while main-

taining the core orchestration capability through learning-based algorithms with design

principles similar to existing works (see Chapter 4).

3https://github.com/Cloudslab/qsimpy
4https://quantum.cloud.ibm.com/docs/en/api/qiskit/transpiler
5https://quantum.cloud.ibm.com/docs/en/api/qiskit-ibm-runtime/fake-provider



196 Fidelity-aware DRL-based Task Orchestrator for Quantum Computing

6.4.2 Deep Reinforcement Learning Model

Based on the system model and problem formulation in Section 6.3, we model the quan-

tum task orchestration as a Markov Decision Process (MDP) to enable adaptive pol-

icy training through deep reinforcement learning. The MDP is defined by the tuple

(S, A, P, R, γ), where S is the state space, A the action space, P the state transition prob-

ability, R the reward function, and γ ∈ [0, 1] the discount factor that balances immediate

and future rewards. At each discrete time step t, the agent observes the current state st

of the environment, selects an action at according to a policy π(at|st), and moves to the

next state st+1 while receiving a reward rt. The objective of the agent is to maximize the

expected cumulative discounted reward, defined as Vπ(st) = Eπ

[
∑t γtrt

]
, by learning

an optimal policy π. Typically, the policy is parameterized by a neural network and is

improved iteratively through training based on observed transitions and rewards.

State Space S: The state st at time t ∈ T is a concatenation of the feature vector

of the current quantum task τi and the feature vectors of all available quantum nodes

(QNodes) N in the environment.

st =
(

fτi
t , fNt

)
(6.14)

where fτi
t ∈ Rp is the p-dimensional feature vector of the current QTask τi, and fNt ∈

Rm×o is the concatenated feature matrix of all m QNodes, each with o features. All

features are normalized to [0, 1] to ensure stable learning dynamics across heterogeneous

scales. Thus, the State space can be defined as:

S = {st|st =
(

fτi
t , fNt

)
, ∀t ∈ T} (6.15)

Action Space A: The action space is discrete and corresponds to the assignment of a

suitable QNode for the placement of the current incoming QTask. At each timestep, the

agent chooses action at ∈ {0, 1, . . . , m− 1}, where m = |N | and at = i denotes assigning

the task to QNode ni ∈ N . Thus,

A = N (6.16)

Reward Function R: The reward function directly implements the orchestration per-
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formance model defined in Equation 6.9. For each assignment decision to allocate QTask

τi to QNode nj at time t, the reward rt ∈ R combines the fidelity score Fi,j and time

penalty Ti,j with configurable weight β:

rt =

Fi,j − β · Ti,j if the execution is successful

Pf ail otherwise
(6.17)

A failure penalty Pfail is applied when task τi cannot be executed on the selected node

for any reason, providing negative feedback for infeasible assignments to improve the

decision of the reinforcement learning policy.

6.4.3 QFOR Policy

The QFOR technique extends the Proximal Policy Optimization algorithm [291] to the

quantum cloud orchestration problem, with the overall training workflow shown in Al-

gorithm 5. The algorithm operates on the principle of learning an optimal scheduling

policy πθ : S → ∆(A) that maximizes long-term cumulative reward while maintaining

stable learning dynamics through trust region constraints.

Initially, the algorithm initializes three components: (i) a parameterized policy net-

work πθ with parameters θ that maps states to action probability distributions, (ii) a

value function approximator Vϕ with parameters ϕ that estimates state values for advan-

tage computation, and (iii) an experience buffer B for storing trajectory data. Besides,

the quantum computing environment instantiation involves configuring heterogeneous

quantum nodes to mimic the realistic NISQ hardware parameters, including error rates,

gate durations, and qubit connectivity constraints.

The outer training loop iterates over K policy improvement cycles, where each iter-

ation corresponds to one complete policy update using collected experience data. This

structure follows the standard PPO algorithm [291] and Ray RLlib [280] of alternating

between data collection and policy optimization phases. The experience buffer is cleared

at the beginning of each iteration to ensure on-policy learning. Parallel rollout collection

across W workers enables efficient data gathering and improved sample diversity. Each

worker operates independently, reducing correlation between consecutive experiences
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Algorithm 5: QFOR Training Workflow with Proximal Policy Optimization
Input: QTask dataset QD, QNodes N , hyperparameters Θ
Output: Trained policy πθ

1 Initialize: Policy network πθ , value network Vϕ, experience buffer B;
2 Initialize: Quantum Cloud Environment in QSimPy (QSimPyEnv);
3 for iteration k = 1, 2, . . . , K do
4 B ← ∅ // Clear experience buffer
5 for worker w = 1, 2, . . . , W do
6 Reset environment: (s0, τ0) ∼ QSimPyEnv(QD);
7 for step t = 0, 1, . . . , T − 1 do
8 st ← fstate(τt,N , t) // Normalized features
9 at ∼ πθ(·|st) // Sample action from policy

10 ProcessTask(τt, nat);
11 rt ← CaculateReward();
12 st+1, τt+1 ← NextTask() // Get next QTask
13 B ← B ∪ {(st, at, rt, st+1)} // Store exp.
14 if episode terminated or t = T − 1 then
15 break;
16 end if
17 end for
18 end for
19 Policy Update:;
20 Compute advantages: Ât = δt + (γλ)δt+1 + . . .;
21 Compute returns: R̂t = Ât + Vϕ(st);
22 for epoch e = 1, 2, . . . , E do
23 for minibatch Bm ⊂ B do

24 rt(θ)←
πθ(at|st)

πθold(at|st)
// Probability ratio

25 LCLIP(θ)← E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
;

26 LVF(ϕ)← E
[
(Vϕ(st)− R̂t)2];

27 LENT(θ)← E [H(πθ(·|st))] // Entropy bonus

28 θ ← θ + απ∇θ(LCLIP(θ) + c1LENT(θ));
29 ϕ← ϕ− αv∇ϕLVF(ϕ);
30 end for
31 end for
32 θold ← θ // Update old policy parameters

33 end for
34 return Trained policy πθ
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and enhancing the robustness of gradient estimates during policy updates. Environment

reset initializes a new episode by sampling the initial QTask τ0 from the QASM-based

[293]circuit dataset QD and computing the corresponding initial state s0. The stochas-

tic nature of task arrival ensures diverse training scenarios and prevents overfitting to

specific task sequences.

The inner episode loop processes quantum tasks sequentially until episode termi-

nation at the final timestep t or when the task limit is reached. Each step corresponds

to scheduling one incoming quantum task to an available quantum node. Action sam-

pling follows the current policy distribution, where at represents the selected QNode

index. The stochastic policy enables exploration while the learned parameters θ bias the

selection toward high-reward actions based on accumulated experience. Each QTask

execution involves a circuit transpilation process and performance metrics estimation

on the selected quantum node nat based on the calibration data of the quantum device.

Then, the reward function combines multiple performance indicators as defined (see

Equation 6.17) in the previous section.

State transition involves advancing to the next quantum task in the episode sequence

and updating the environment time. The next state st+1 incorporates updated quan-

tum nodes metrics and the new quantum task’s characteristics, maintaining the Markov

property essential for policy gradient convergence. Experience tuple storage enables

subsequent policy optimization through gradient-based updates. Each tuple (st, at, rt, st+1)

provides a complete transition record necessary for advantage estimation and policy

gradient computation. Episode termination logic ensures proper boundary handling

when task limits are reached or no additional tasks are available. This prevents infinite

episodes while maintaining consistent episode lengths for stable learning dynamics.

For the policy optimization phase, our QFOR technique leverages the standard PPO

algorithm [291] and adapts to quantum task orchestration. The advantage computation

using Generalized Advantage Estimation (GAE) [294]:

Ât =
∞

∑
l=0

(γλ)lδt+l

where δt = Rt + γVϕ(st+1)− Vϕ(st) represents the temporal difference error. GAE bal-
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ances bias and variance in advantage estimation through the λ parameter.

During the policy update phase, PPO’s clipped surrogate objective function is used

to ensure bounded policy updates:

LCLIP(θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
where rt(θ) =

πθ(at|st)

πθold(at|st)
. The value function loss LVF(ϕ) = E[(Vϕ(st)− R̂t)2] and en-

tropy bonus LENT(θ) = E[H(πθ(·|st))] provide additional optimization objectives for

stable learning and adequate exploration. The clipped objective function ensures mono-

tonic policy improvement with high probability, while the adaptive reward structure

maintains the Markov property essential for convergence and provides scale-invariant

rewards across diverse circuit complexities, enabling consistent learning signals.

6.5 Performance Evaluation

6.5.1 Environment Setup

We use our QSimPy framework6 for the simulation of quantum cloud environments.

We also extended it further to support the modeling of noisy quantum nodes using

device calibration data and mimic the practical execution process of a quantum task,

which comprises the circuit transpilation to selected QNodes before execution. This ap-

proach allows us to emulate heterogeneous quantum cloud computing environments

and quantum task execution more comprehensively compared to other existing work,

such as [290] and our iQuantum toolkit (see Chapter 4). For quantum cloud compu-

tation resources, we created a cluster of 5 different quantum nodes ranging from 27

to 127 qubits using the calibration data of IBM devices (using Qiskit FakeBackend in-

stances7), including ibm auckland, ibm hanoi, ibm kolkata, ibm brisbane, and

ibm sherbrooke.

For quantum tasks, we created different training and evaluation datasets with 16

different quantum benchmark algorithms with qubit numbers ranging from 2 to 27 and

6https://github.com/Cloudslab/qsimpy
7https://quantum.cloud.ibm.com/docs/en/api/qiskit-ibm-runtime/fake-provider
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initial circuit depths (before transpilation) of 3–30 layers, derived from the MQT Bench

dataset [1]. The QTask arrival times were generated following a Poisson distribution,

similar to other works [295, 296] to mimic the task arrival at the cloud data center. We

use Gymnasium to wrap the QSimPy-based environment and use Ray RLlib [280] for

implementing the reinforcement learning training and using Ray Tune [278] for hyper-

parameter tuning. All experiments are conducted at the Melbourne Research Cloud

computation node with an AMD EPYC 9474F 48-core CPU and 128GB of RAM.

6.5.2 Performance Study

QFOR Policy Training Performance

To thoroughly evaluate the adaptability of QFOR across different operational priorities

in quantum cloud environments, with the main priority to optimise the fidelity perfor-

mance, we trained separate policy instances under different time weights β ∈ {0.5, 1.0}
and different hyperparameters to explore the orchestration trade-off and determine the

balance configuration for optimizing the overall orchestration performance. We em-

ployed Ray Tune [278] for systematic hyperparameter optimization across all three β

configurations, evaluating key parameter combinations to identify optimal settings. The

optimal hyperparameter configuration was selected based on convergence stability and

final performance across all training modes, with the tuning result shown in Table 6.2.

Other hyperparameters and settings are based on the default configuration of PPO in

Ray RLlib [280].

Table 6.2: QFOR Training Hyperparameters

QFOR Parameters Value
Learning Rate 0.0001
Discount Factor (γ) 0.9
KL Coefficient 1.0
GAE Parameter (λ) 0.95
PPO Clip Parameter 0.3
Entropy Coefficient 0.01
Train Batch Size per Learner 180
Fidelity Reward Weight (α1, α2, α3) 0.8, 0.1, 0.1
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Figure 6.4 shows training convergence across 800 training episodes. The optimal con-

figuration across all configurations demonstrates superior performance with three key

advantages: (1) stable reward convergence to approximately 0.70 by training episode

400-500 across all modes, (2) minimal variance indicating robust optimization dynamics,

and (3) consistent performance across different β values, demonstrating hyperparameter

robustness. Other configurations exhibited training instability and performance degra-

dation after episode 500-600, particularly in balanced and high-performance modes. The

lower discount factor (γ = 0.9) proves advantageous for quantum orchestration by ap-

propriately balancing immediate scheduling decisions with long-term efficiency in dy-

namic environments.

(a) β = 0.5 (b) β = 1.0

Figure 6.4: Training convergence comparison across all configurations. The optimal
hyperparameter configuration (black line with markers) achieves more consistent con-
vergence in both time weight β settings.

Execution Fidelity Performance Analysis

To evaluate the effectiveness of the QFOR policy, we conducted a comprehensive per-

formance evaluation across 100 evaluation episodes with 6,000 quantum tasks using an

independent test dataset distinct from the training data to ensure an unbiased assess-

ment of the learned policies’ generalization capabilities and practical applicability. We

compared QFOR against four representative baseline policies, similar to the evaluation
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approach of Chapter 5 and other related works [160, 290]:

• Round Robin (RR): Distributes quantum tasks cyclically across nodes, ensuring fair

resource allocation while potentially ignoring node-specific characteristics.

• Smallest Error First (SEF): Assigns QTask to QNode with the smallest average error

rates of all gate operations.

• Fastest Duration First (FDF): Assigns QTask to QNode with the fastest average gate

duration times.

• First Available Node (FAN): Assigns QTask to the first idle quantum node to mini-

mize waiting time.

These baselines represent the spectrum of conventional scheduling strategies com-

monly employed in distributed computing environments. Figure 6.5 and Table 6.3 present

the relative fidelity performance comparison across all policies.

(a) Execution fidelity in all evaluation episodes
(b) Average execution fidelity of all poli-
cies

Figure 6.5: Relative execution fidelity performance comparison across all policies over
100 evaluation episodes.

QFOR demonstrates substantial fidelity advantages across all operational configura-

tions. The episode-wise analysis in Figure 6.5a shows QFOR’s consistent enhancement

throughout the evaluation period. Notably, all three QFOR configurations maintain sta-

ble performance in the 0.70-0.75 range, while baselines cluster in the 0.394-0.56 range.
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As shown in Figure 6.5b, with error bars denoting standard deviation, QFOR achieves

consistently higher relative fidelity performance, with an average fidelity score at 0.725

using β = 0.5, and 0.75 using β = 1.0. These results represent significant improvements

over the best-performing baseline (RR at 0.56), with enhancement margins of 29.5% and

34%, respectively. In contrast, the worst-performing policy, SEF, which greedily selects

the QNode with the smallest average error rate regardless of the scheduled quantum

circuit structure, fails to maintain a high fidelity performance score, achieving a mean

performance score of 0.395. This highlights that final execution fidelity depends not only

on the average error rate of the QNode but also critically on the transpilation process,

including the mapping of the QTask to the specific qubit topology of the QNode. These

results indicate the key limitations of conventional scheduling approaches in quantum

cloud environments and demonstrates robust policy learning that generalizes effectively

to unseen quantum tasks and dynamic device conditions. The consistent high perfor-

mance across different β values demonstrates the ability of QFOR to learn context-aware

scheduling policies that adapt optimization priorities while maintaining overall effec-

tiveness.

Table 6.3: Detailed performance comparison of all policies, regarding average relative
fidelity score, execution time, and total completion time (± standard deviation) over 100
evaluation episodes

Policy Average Fidelity Score Average Execution Time (s) Average Completion Time (s)

QFOR (β = 0.5) 0.725± 0.034 1.104± 0.131 3.967± 2.336
QFOR (β = 1.0) 0.750± 0.033 1.412± 0.161 8.580± 5.946
RR 0.560± 0.021 1.523± 0.174 1.784± 0.357
SEF 0.395± 0.004 1.220± 0.123 521.675± 306.631
FDF 0.415± 0.009 1.039± 0.114 57.502± 42.483
FAN 0.556± 0.022 1.444± 0.157 1.448± 0.159

Execution Fidelity-Time Trade-off Analysis

As the main priority of the orchestration is optimizing the fidelity performance, with the

secondary consideration being to balance the execution time required, we conducted

a comprehensive analysis of total completion time and quantum execution time of all

QTasks in the evaluation across all policies to find the optimal time weight to achieve
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(a) Task completion time across evaluation
episodes

(b) Average task completion time compari-
son

(c) Task execution time across evaluation
episodes (d) Average task execution time comparison

Figure 6.6: Task completion and quantum execution time analysis of all policies over
100 evaluation episodes.
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this orchestration goal and explore the trade-off between fidelity and time in the de-

cision. Figure 6.6 and Table 6.3 present a detailed timing analysis across all policies,

demonstrating both average performance and episode-wise progression over 100 eval-

uation episodes.

The results indicate that greedy policies focusing exclusively on gate error rates (SEF)

or gate duration time (FDF) lead to substantial waiting times, resulting in significantly

longer total completion times compared to other approaches. In contrast, policies such

as First Available Node (FAN) and Round Robin (RR) effectively minimize waiting times

by distributing tasks more evenly, thereby reducing overall completion time.

As quantum execution time cost is critical and task queueing before execution can

be handled by a classical controller, it is more valuable and cost-efficient to optimise the

quantum execution time. Figures 6.6c and 6.6d show the actual quantum execution time

of all policies. The result shows that the balanced time weight β = 0.5 achieves a rea-

sonable average execution time, which is slightly higher than the execution time greedy

policy (FDF), while maintaining the fidelity score consistently higher than all of the other

baselines, up to approximately 84% higher relative fidelity performance score compared

to the SEF baseline. This result suggests the optimal and balanced configurations of the

time weight that encourage the QFOR policy to achieve high fidelity while maintaining

the balance of fidelity-time tradeoff. Furthermore, minimising the execution time also

inherently optimises the monetary cost of using quantum resources, which is essential

in the current landscape of quantum cloud computing environments.

The results demonstrate that adaptive orchestration fundamentally balances the ex-

ecution fidelity-time trade-off. While traditional approaches force a binary choice be-

tween speed and quality, QFOR policy identifies strategies that balance both objectives.

This analysis establishes three key insights for quantum cloud orchestration: (1) Fidelity

should be the key consideration in the current NISQ era as error sensitivity makes qual-

ity optimization essential as fast but inaccurate operations are ultimately ineffective, (2)

Our adaptive, configurable policy enable flexible resource management optimization

strategies which can be further extended, and (3) DRL-based is a potential approach that

discovers non-obvious scheduling patterns that outperform conventional heuristics.



6.6 Summary 207

6.6 Summary

This chapter presents QFOR, a novel fidelity-aware deep reinforcement learning frame-

work for quantum task orchestration in heterogeneous cloud-based environments with

NISQ computation resources. We developed a holistic orchestration technique specifi-

cally designed for optimizing overall fidelity performance, which is critical for quantum

task execution. Our systematic approach integrates comprehensive quantum task execu-

tion and fidelity performance estimators based on device calibration data, enabling rig-

orous emulation of noisy quantum hardware behavior. The configurable orchestration

objectives successfully balance execution fidelity and time across different operational

priorities, with extensive evaluation demonstrating 29.5-84% fidelity performance score

improvements over traditional baseline methods. This work establishes the founda-

tion and facilitates learning-driven quantum resource management research in hybrid

quantum-HPC systems, which require additional effort to develop a robust and adap-

tive framework and techniques to keep up with the advances of quantum hardware

development.





Chapter 7

Conclusions and Future Directions

This chapter serves as the conclusion of the thesis, providing a comprehensive summary of the pri-

mary works and contributions presented. Additionally, it outlines essential future directions for the

continued advancement of cloud-based quantum computing and its efficient resource management.

7.1 Summary of Contributions

The rapid evolution of quantum computing technologies has catalyzed the emergence of

quantum cloud computing as a paradigm that democratizes access to quantum compu-

tational resources without requiring specialized infrastructure. Today, quantum cloud

computing enables researchers, developers, and organizations to leverage quantum ca-

pabilities through cloud-based platforms, addressing the prohibitive costs and techni-

cal complexities of maintaining dedicated quantum hardware. Major cloud providers

such as IBM Quantum, Amazon Braket, and Microsoft Azure Quantum have established

quantum cloud services that provide remote access to various quantum processors and

simulators. The integration of quantum computing with cloud infrastructure presents

unique resource management challenges fundamentally different from classical cloud

environments. Unlike traditional cloud computing, quantum cloud environments are

characterized by heterogeneous quantum backends with varying capabilities, noise lev-

els, and availability patterns. The inherently fragile nature of quantum states, the limited

quantum coherence times, and the current limitations of NISQ-era quantum devices [15]

create distinct scheduling and orchestration complexities. These challenges are com-

pounded by the hybrid nature of quantum-classical workflows, where quantum tasks

must be seamlessly integrated with classical preprocessing and postprocessing steps. As

209
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a result, achieving efficient resource utilization and optimal task execution in quantum

cloud environments requires novel approaches that account for quantum-specific con-

straints while maintaining compatibility with established cloud computing paradigms.

Chapter 1 briefly introduced the emerging paradigm of quantum cloud computing

and its distinctive resource management challenges arising from the unique characteris-

tics of quantum systems. The chapter highlighted the growing importance of quantum

cloud platforms in democratizing quantum computing access and presented the criti-

cal need for specialized resource management techniques. Furthermore, it outlined the

research questions addressing the gaps in quantum cloud resource management and

summarized the thesis contributions towards advancing this rapidly evolving field.

Chapter 2 investigated the existing quantum cloud computing landscape through a

comprehensive systematic mapping study, encompassing service models, platforms, ap-

plications, and resource management approaches. A detailed taxonomy of quantum

cloud computing research domains was presented, categorizing studies according to

their focus areas, including quantum serverless architectures, hybrid quantum-classical

computing, and quantum cloud security. The chapter provided a thorough analysis

of recent literature and identified critical research gaps in quantum resource manage-

ment, highlighting the need for comprehensive frameworks and intelligent orchestra-

tion mechanisms.

Chapter 3 developed a holistic serverless quantum computing framework that en-

ables seamless integration of quantum computation within classical cloud environments

while avoiding vendor lock-in constraints. The proposed Quantum Function-as-a-Service

(QFaaS) architecture provides multi-SDK support and adaptive backend selection poli-

cies, complemented by cold start mitigation strategies and DevOps integration capa-

bilities. This contribution establishes the foundation for practical quantum serverless

deployments in heterogeneous cloud environments.

Chapter 4 designed and implemented a comprehensive modeling and simulation

framework for quantum computing environments that facilitates systematic evaluation

of resource management strategies without requiring expensive physical quantum hard-

ware access. The framework incorporates realistic quantum system models, discrete-

event simulation architecture, and multi-use case support for various quantum resource
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management scenarios. This contribution provides researchers and practitioners with

essential tools for developing and validating quantum cloud resource management ap-

proaches.

Chapter 5 proposed a novel deep reinforcement learning-based approach for time-

aware quantum task placement that adapts to dynamic quantum cloud environments

and optimizes task completion efficiency. The developed Deep Q-Network framework,

enhanced with Rainbow DQN techniques, addresses the complex decision-making re-

quirements of quantum task scheduling through comprehensive state representation

and adaptive reward mechanisms. This contribution demonstrates significant improve-

ments in time-aware performance for quantum workload management.

Chapter 6 proposed a fidelity-aware quantum task orchestration framework using

deep reinforcement learning that effectively balances execution fidelity and time con-

straints in NISQ-era quantum systems. The framework incorporates noise-aware per-

formance modeling and Proximal Policy Optimization approaches to learn adaptive or-

chestration policies across heterogeneous quantum cloud environments. This contribu-

tion addresses the critical challenge of maintaining quantum execution quality while

meeting operational time requirements, providing substantial fidelity improvements

compared to conventional scheduling approaches.

Together, these research contributions establish a comprehensive foundation for adap-

tive and intelligent resource management in quantum cloud computing environments,

representing significant advances in this rapidly evolving field. These developments

provide essential building blocks for realizing the full potential of quantum cloud com-

puting and pave the way for widespread adoption of quantum technologies in practical

cloud-based applications.

7.2 Future Research Directions

While our work in this thesis demonstrates potential in quantum cloud resource man-

agement, we recognized several limitations that present opportunities for future re-

search. This section outlines critical open problems and potential future directions based

on insights from our research, aiming to improve the potential of quantum computing.
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7.2.1 Quantum Computing Resource Management

Analogously to its classical counterpart, resource management emerges as a critical is-

sue in the quantum cloud computing landscape, attributed to the diversity of quan-

tum hardware technologies. Due to the heterogeneity of different quantum hardware

technologies, multiple aspects of the quantum resource management problem, such as

allocation, scheduling, and utilization, must be addressed. It is essential to develop

algorithms that can efficiently allocate and schedule resources across varied quantum

tasks while optimizing their utilization [31]. Quantum computation resources are in-

herently expensive, emphasizing the importance of designing efficient and adaptable

resource allocation and scheduling algorithms. The resource utilization must also be

optimized while ensuring the reliability of quantum devices to produce correct compu-

tation results. This challenge parallels those encountered in classical cloud computing,

yet it is magnified by the unique complexities of quantum technology. Addressing this

challenge is crucial for harnessing the full potential of quantum cloud computing, neces-

sitating innovative approaches to navigate the intricacies of quantum resource manage-

ment and facilitate the growth and application of quantum cloud computing services.

Furthermore, the transition from NISQ to future fault-tolerant quantum hardware is ex-

pected to fundamentally reshape quantum resource management models, enabling new

abstraction layers, scheduling strategies, and reliability guarantees.

Several directions can be considered to further extend the robustness of our work

in Chapter 5 and 6. First, dynamic device calibration data can be considered to mimic

continuously updated device characteristics and adapt scheduling policies in real-time.

Second, we can extend the evaluation of QFOR on large-scale quantum cloud infras-

tructures with dozens of quantum devices and circuits that require a larger number of

qubits. Additionally, circuit knitting [26] for distributing large quantum tasks across

distributed quantum systems can be enhanced by utilizing realistic quantum circuit sim-

ulations instead of synthetic data, making it more suitable for practical environments.

Furthermore, the centralized policy learning architecture may become a bottleneck in

distributed quantum computing environments, motivating future exploration of dis-

tributed reinforcement learning architectures [230, 266] where multiple agents coordi-

nate scheduling decisions across geographically distributed quantum resources. These
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future directions will be essential for realizing the full potential and optimizing the re-

source management of quantum cloud computing as the technology matures toward

practical quantum advantage applications.

7.2.2 Modeling and Simulation of Quantum Computing Environments

Accurate modeling and simulation remain indispensable for designing and evaluating

resource management strategies in quantum computing. Existing simulators such as

our iQuantum toolkit (see Chapter 4) have demonstrated the feasibility of modeling

hybrid quantum-classical environments, enabling the evaluation of scheduling and or-

chestration policies without incurring the cost of real hardware access. Future research

should extend simulation capabilities toward large-scale, distributed, and networked

quantum computing infrastructures [297], incorporating models of quantum commu-

nication channels, entanglement distribution, and quantum internet protocols. Such

extensions are critical for exploring the scalability of quantum cloud-edge systems [227]

and for studying multi-tenant interactions under realistic workload dynamics. Further-

more, integrating communication latency models will provide more robust testbeds for

evaluating quantum task orchestration frameworks. In addition, the development of

visualization features, akin to tools such as CloudAnalyst [298], would enable intuitive

analysis of quantum workloads, network behavior, and scheduling outcomes, thereby

enhancing the accessibility and impact of simulation frameworks. Advancing modeling

and simulation in these directions will accelerate the prototyping of algorithms and poli-

cies for quantum cloud resource management, supporting the transition from NISQ-era

devices to upcoming fault-tolerant, large-scale quantum computing environments.

7.2.3 Quantum Serverless Computing

Leading companies in quantum computing, such as IBM, have claimed that quantum

serverless is potentially the future of quantum programming [299]. To empower the

quantum serverless model in the NISQ era, some open challenges must be addressed.

First, resource orchestration should be optimized to deal with various heterogeneous

backends and the high load of requests from multiple users. Resource orchestration
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refers to the collaboration of multiple processes of allocating, scheduling, and monitor-

ing the usage of quantum and classical resources. This orchestration problem is essential

for all cloud-based systems and is more challenging for serverless quantum computing

systems, as both quantum and classical resources are involved. They must be flexibly or-

chestrated to fit all the task requirements and ensure resource utilization while minimiz-

ing the total cost. Second, supplement techniques, such as quantum circuit knitting [26],

should be developed to enable large-scale quantum circuit execution on multiple NISQ

devices. Circuit knitting can segment a large quantum circuit into smaller, manageable

circuits for execution on different devices before integrating the outcomes, which is a vi-

tal area of research. Other approaches, including entanglement forging [300] and circuit

cutting [253], are under exploration to address these challenges. These techniques are

essential in overcoming the limitations of NISQ devices, enabling the execution of com-

plex quantum computations, and advancing the serverless quantum computing model.

Several promising directions can also be explored to further extend the capabilities

of our QFaaS framework in Chapter 3. First, QFaaS can be extended to support addi-

tional quantum cloud providers, enabling cross-platform execution capabilities. More

advanced orchestration techniques can be incorporated to improve the automatic se-

lection of quantum backends for hybrid quantum-classical applications. Additionally,

enhancements to the cold start mitigation policy for quantum function execution can

be developed to further optimize performance. Furthermore, strengthening the security

and scalability features of QFaaS will be essential to support large-scale deployments

and accommodate the growing demands of multi-user quantum cloud environments.

7.2.4 Distributed and Parallel Quantum Computation

The integration of multiple quantum computing resources to harness their collective

power is essential [301, 302]. However, this direction faces significant challenges that

require extensive effort to address. First, the coherence of quantum states needs to be

maintained while transferring quantum data across different devices. Today’s quantum

computers are error-prone [15] due to the high sensitivity of quantum states, which are

easily affected by environmental factors, such as electromagnetic noise and tempera-
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ture, so maintaining the qubit quality in individual quantum devices is difficult. The

challenge lies in ensuring the integrity of qubits across potentially vast distances, de-

manding advancements in quantum networking and data communication to achieve

reliable inter-device connectivity. Besides, the scalability of the system and the require-

ment of designing effective distributed quantum algorithms are challenging for large

distributed quantum systems. This requires innovative approaches to algorithm design

that can navigate the intricacies of distributed quantum computations, optimizing per-

formance across a heterogeneous network of quantum processors [104]. In addition, par-

allel quantum processing of multiple quantum tasks simultaneously on a single quan-

tum computer is still an open problem without an efficient solution devised. Current

quantum computing paradigms struggle to efficiently parallelize tasks due to the quan-

tum decoherence and error rates associated with simultaneously manipulating multiple

qubits. Developing methodologies for parallel quantum processing that can mitigate

interference and maximize the utilization of quantum resources remains a critical area

of research, promising to enhance the computational throughput of quantum systems

significantly. Addressing these challenges is pivotal for realizing the full potential of

distributed and parallel quantum computing [111].

7.2.5 Quantum Cloud Applications

The advent of quantum cloud computing has poised software engineering at the brink

of significant evolution, offering access to quantum computational resources analogous

to classical infrastructure. However, the emerging field of quantum software develop-

ment confronts several limitations, particularly when leveraging cloud-based quantum

resources. A primary problem is the lack of a standardized quantum programming

model. Currently, each quantum cloud provider operates on distinct software platforms,

development toolkits, and standards [58]. This absence of uniformity complicates the

development of cross-platform quantum applications, impeding their ability to operate

seamlessly across diverse cloud environments. Additionally, the deployment paradigm

for quantum applications diverges significantly from that of traditional software. Unlike

classical applications, which can reside on servers for on-demand invocation, quantum
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applications require recompilation and transmission to quantum computers for each ex-

ecution. This discrepancy underscores the need for innovative approaches to quantum

software lifecycle management, emphasizing the critical role of standardization and the

development of deployment methodologies tailored to the quantum computing domain.

Furthermore, quantum databases have recently been explored as a potential appli-

cation within quantum cloud computing, offering a new approach for data storage and

retrieval that leverages quantum principles for enhanced search and optimization capa-

bilities [303]. Implementing practical quantum databases on cloud platforms presents

unique challenges, including the high resource demands of quantum memory and the

need for secure, efficient access in multi-tenant environments. Therefore, addressing

these issues will require significant advancements in quantum data structures, error cor-

rection, and secure access protocols [304], all of which are still in the early stages.

7.2.6 Quantum Cloud for Quantum Machine Learning Applications

In the domain of classical computing, Machine Learning Operations (MLOps) stream-

line the machine learning (ML) application development and deployment with DevOps

practices to enhance the efficiency of ML application workflows [305]. In the quantum

computing realm, Quantum Machine Learning (QML) has emerged as a promising field,

attracting significant interest from researchers [306]. The design of cloud-based systems

tailored for QML applications is essential for their advancement. Adopting an approach

akin to MLOps, termed Quantum Machine Learning Operations (QMLOps), could sig-

nificantly streamline the development and management of QML applications. By ap-

plying the principles of MLOps to the quantum context, QMLOps aims to facilitate the

seamless integration, deployment, and operation of QML workflows, thereby accelerat-

ing the maturation of quantum computing technologies and their application in solving

complex computational problems. This convergence of quantum computing and ma-

chine learning within cloud environments underscores the potential for QMLOps to act

as a trigger for innovation and efficiency in the realm of quantum machine learning.
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7.2.7 LLM-guided Quantum Software and Resource Management

The emergence of large language models (LLMs) provides promising opportunities for

advancing quantum software engineering and resource management in quantum com-

puting environments. Current development workflows require specialized expertise

in quantum computing and hardware-specific compilation, posing barriers for broader

adoption. LLMs trained on high-quality quantum software datasets can potentially

lower this barrier by assisting in generating, transpiling, and optimizing quantum cir-

cuits across heterogeneous backends [307–309]. Beyond software development, LLMs

can be coupled with other machine learning approaches, such as deep reinforcement

learning (see Chapter 5 and 6), to provide adaptive guidance for quantum task schedul-

ing and resource allocation. For example, LLMs may serve as natural-language inter-

faces for specifying quantum workloads, which are then mapped to quantum-classical

workflows by orchestration engines. This also raises critical research questions regard-

ing the reliability of LLM-generated code, integration with quantum task scheduling

policies, and the design of trustworthy co-pilots for quantum resource management.

Addressing these challenges can significantly reduce the barrier to quantum application

development and enable more efficient use of quantum computing resources.

7.2.8 Quantum-based Approaches for Cloud-Edge-IoT Resource Management

Quantum computing-based approaches also present potential opportunities for address-

ing resource management challenges in distributed computing environments, such as

with cloud, edge, and Internet of Things (IoT) systems. Classical approaches to re-

source allocation, task offloading, and workload balancing across the cloud-edge-IoT

continuum can face significant computational barriers when scaling to thousands or

millions of connected devices with heterogeneous requirements. Quantum algorithms

for optimization, such as the quantum approximate optimization algorithm (QAOA),

offer potential advantages for solving complex resource allocation problems that can

be modelled as quadratic unconstrained binary optimization (QUBO) or maximum cut

problems [310, 311]. These quantum-enabled approaches can potentially address the re-

source management challenges, including task scheduling under deadline constraints,
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energy-aware workload distribution, and service placement in cloud-edge computing

environments. Future research should also explore quantum-inspired [312] and hybrid

quantum-classical approaches that leverage near-term quantum processors for specific

optimization subroutines while maintaining classical control frameworks.

7.2.9 Quantum Cloud Security and Privacy

The imperative to secure data and privacy within quantum cloud computing cannot be

exaggerated, especially given quantum computing’s capability to compromise conven-

tional cryptographic techniques. There is a pressing need to develop security strategies

rooted in quantum principles to protect the quantum cloud ecosystem. This includes a

thorough exploration and mitigation of potential quantum-specific attack vectors. Addi-

tionally, Quantum Key Distribution (QKD) [313, 314] emerges as a pivotal research area

in quantum cloud security, necessitating ongoing enhancements to ensure the secure

transmission of encryption keys within cloud infrastructures. Despite progress in for-

mulating attack models and devising corresponding defensive measures for quantum

computing, current strategies only begin to address the breadth of potential security

challenges. Several critical areas require further investigation, such as securing qubit

technologies, quantum hardware and platforms, and preserving data security for quan-

tum cloud applications [174]. Addressing these aspects of quantum cloud security is vi-

tal for advancing the field and ensuring the integrity and confidentiality of data within

quantum computing environments.

Beyond these key challenges discussed, several emerging directions require further

attention. First, integrating quantum cloud computing with the quantum internet [88,

92] introduces important challenges such as managing quantum state distribution, de-

ploying quantum repeaters, and developing compatible quantum communication pro-

tocols. These are essential for building future distributed quantum systems. Second,

combining quantum computing with the edge computing paradigm opens new use

cases where limited devices, such as sensors or mobile systems, offload quantum tasks to

cloud-based quantum processors. This can support efficient hybrid computing in real-

world environments. Finally, as QCC technologies grow, social and ethical issues, such
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as protecting user privacy, ensuring transparency in quantum decision-making, and pro-

viding fair access to quantum resources, must also be considered. These directions are

important for building a secure, usable, and inclusive quantum cloud ecosystem.

7.3 Final Remarks

Quantum cloud computing has emerged to democratize access to quantum computa-

tional resources, enabling researchers and organizations to harness quantum capabili-

ties without the prohibitive costs and complexities of maintaining dedicated quantum

hardware. However, the unique characteristics of quantum systems, including noise

sensitivity, limited coherence times, and heterogeneous quantum systems, present un-

precedented resource management challenges that cannot be addressed by conventional

cloud computing approaches. In this thesis, we investigated the intricate interplay be-

tween quantum hardware constraints and cloud resource management to develop adap-

tive and intelligent orchestration frameworks that optimize both performance and re-

source utilization in quantum cloud environments. The frameworks, algorithms, and

simulation tools presented in this thesis achieve better resource efficiency and task exe-

cution quality while accommodating the inherent limitations of NISQ-era quantum sys-

tems. Our serverless quantum computing architecture enables seamless integration of

quantum functions within classical workflows, while our deep reinforcement learning-

based approaches provide adaptive solutions for dynamic quantum task scheduling

and fidelity-aware orchestration. Furthermore, our comprehensive simulation frame-

work offers researchers essential tools for developing and validating quantum cloud

resource management algorithms without requiring expensive physical quantum hard-

ware access. Research on quantum cloud resource management, such as presented in

this thesis, will enable quantum cloud providers to efficiently manage quantum work-

loads in highly heterogeneous, dynamic, and noise-prone quantum computing environ-

ments at scale. Moreover, these research outcomes can further advance the practical

deployment of quantum technologies and accelerate the development of quantum com-

puting ecosystems.
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[192] M. A. Serrano, R. Pérez-Castillo, and M. Piattini, Eds., Quantum Software Engineer-

ing. Cham: Springer International Publishing, 2022.

[193] F. Gemeinhardt, A. Garmendia, and M. Wimmer, “Towards Model-Driven Quan-

tum Software Engineering,” in 2021 IEEE/ACM 2nd International Workshop on

Quantum Software Engineering (Q-SE). Madrid, Spain: IEEE, Jun. 2021, pp. 13–

15.

[194] IBM Quantum, Qiskit Textbook. Online: IBM, 2022.

[195] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,

D. Bucher, F. J. Cabrera-Hernández, and et. al., “Qiskit: An Open-source

Framework for Quantum Computing,” Jan. 2019. [Online]. Available: https:

//zenodo.org/record/2562111

[196] Cirq Developers, “Cirq Framework,” 2023. [Online]. Available: https://zenodo.

org/record/5182845

[197] Microsoft, “Q# Quantum Programming Language,” 2021. [Online]. Available:

https://github.com/microsoft/qsharp-language

[198] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A Practical Quantum Instruction

Set Architecture,” Tech. Rep., Aug. 2016, arXiv: 1608.03355. [Online]. Available:

http://arxiv.org/abs/1608.03355

[199] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook,

“Strawberry Fields: A Software Platform for Photonic Quantum Computing,”

Quantum, vol. 3, p. 129, Mar. 2019.

[200] V. Bergholm, J. Izaac, M. Schuld, and et. al., “PennyLane: Automatic

differentiation of hybrid quantum-classical computations,” Tech. Rep., Nov. 2018,

arXiv: 1811.04968. [Online]. Available: http://arxiv.org/abs/1811.04968

242

https://zenodo.org/record/2562111
https://zenodo.org/record/2562111
https://zenodo.org/record/5182845
https://zenodo.org/record/5182845
https://github.com/microsoft/qsharp-language
http://arxiv.org/abs/1608.03355
http://arxiv.org/abs/1811.04968


Conclusions and Future Directions BIBLIOGRAPHY

[201] X. Fu, J. Yu, X. Su, H. Jiang, H. Wu, and et. al., “Quingo: A Programming Frame-

work for Heterogeneous Quantum-Classical Computing with NISQ Features,”

ACM Transactions on Quantum Computing, vol. 2, no. 4, pp. 1–37, 2021.
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J. Vučković, V. Vuletić, J. Ye, and M. Zwierlein, “Quantum Simulators: Architec-

tures and Opportunities,” PRX Quantum, vol. 2, no. 1, p. 017003, Feb. 2021.

[234] S. Diadamo, J. Notzel, B. Zanger, and M. M. Bese, “QuNetSim: A Software Frame-

work for Quantum Networks,” IEEE Transactions on Quantum Engineering, vol. 2,

pp. 1–12, 2021.

[235] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho,

M. Papendrecht, J. Rabbie, F. Rozpedek, M. Skrzypczyk, L. Wubben, W. de Jong,

246



Conclusions and Future Directions BIBLIOGRAPHY

D. Podareanu, A. Torres-Knoop, D. Elkouss, and S. Wehner, “NetSquid, a NET-

work Simulator for QUantum Information using Discrete events,” Communications

Physics, vol. 4, no. 1, 2021.

[236] G. Dagkakis and C. Heavey, “A review of open source discrete event simulation

software for operations research,” Journal of Simulation, vol. 10, no. 3, pp. 193–206,

Aug. 2016.

[237] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (IoT): a

vision, architectural elements, and future directions,” Future Generation Computer

Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[238] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog computing for

the internet of things: a survey,” ACM Transactions on Internet Technology, vol. 19,

no. 2, pp. 1–41, May 2019.

[239] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani, “Edge and

fog computing for IoT: a survey on current research activities & future directions,”

Computer Communications, vol. 180, pp. 210–231, Dec. 2021.

[240] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: a toolkit for

modeling and simulation of resource management techniques in the internet of

things, edge and fog computing environments,” Software: Practice and Experience,

vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[241] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized Computation

Offloading Performance in Virtual Edge Computing Systems Via Deep Reinforce-

ment Learning,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4005–4018, Jun.

2019.

[242] L. Sun, X. Jiang, H. Ren, and Y. Guo, “Edge-cloud computing and artificial intel-

ligence in internet of medical things: architecture, technology and application,”

IEEE Access, vol. 8, pp. 101 079–101 092, 2020.

[243] G. Qu, N. Cui, H. Wu, R. Li, and Y. Ding, “ChainFL: a simulation platform for

247



BIBLIOGRAPHY Conclusions and Future Directions

joint federated learning and blockchain in edge/cloud computing environments,”

IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3572–3581, May 2022.

[244] A. W. Malik, T. Qayyum, A. U. Rahman, M. A. Khan, O. Khalid, and S. U. Khan,

“xFogSim: a distributed fog resource management framework for sustainable IoT

services,” IEEE Transactions on Sustainable Computing, vol. 6, no. 4, pp. 691–702,

Oct. 2021.

[245] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and High Performance

Simulation of Quantum Computers,” Scientific Reports, vol. 9, no. 1, p. 10736, Jul.

2019.

[246] H. Bian, J. Huang, J. Tang, R. Dong, L. Wu, and X. Wang, “PAS: A new power-

ful and simple quantum computing simulator,” Software: Practice and Experience,

vol. 53, no. 1, pp. 142–159, 2023.

[247] J. Brennan, L. O’Riordan, K. Hanley, M. Doyle, M. Allalen, D. Brayford,

L. Iapichino, and N. Moran, “QXTools: A Julia framework for distributed quan-

tum circuit simulation,” Journal of Open Source Software, vol. 7, no. 70, p. 3711, Feb.

2022.

[248] A. Dahlberg and S. Wehner, “SimulaQron - A simulator for developing quantum

internet software,” Quantum Science and Technology, vol. 4, no. 1, pp. 0–15, 2019.
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[258] E. Pelofske, A. Bärtschi, and S. Eidenbenz, “Quantum Volume in Practice: What

Users Can Expect From NISQ Devices,” IEEE Transactions on Quantum Engineering,

vol. 3, pp. 1–19, 2022.

[259] C. A. Waldspurger and W. E. Weihl, “Lottery Scheduling: Flexible Proportional-

Share Resource Management,” in Proceedings of the 1st USENIX Conference on Op-

erating Systems Design and Implementation, pp. 1–es.

[260] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme, and A. Kan-

249

http://arxiv.org/abs/2209.14356


BIBLIOGRAPHY Conclusions and Future Directions

dala, “Scalable error mitigation for noisy quantum circuits produces competitive

expectation values,” Nature Physics, Feb. 2023.

[261] “Australian National Quantum Strategy,” May 2023. [Online]. Available:

https://www.industry.gov.au/publications/national-quantum-strategy

[262] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck,

D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Sham-

sul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden,

“Advances in quantum cryptography,” Advances in Optics and Photonics, vol. 12,

no. 4, p. 1012, Dec. 2020.

[263] A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, C.-F. Chen, A. Gilyén, C. T.

Hann, M. J. Kastoryano, E. T. Khabiboulline, A. Kubica, G. Salton, S. Wang,

and F. G. S. L. Brandão, “Quantum algorithms: A survey of applications

and end-to-end complexities,” Oct. 2023, arXiv:2310.03011 [quant-ph]. [Online].

Available: http://arxiv.org/abs/2310.03011

[264] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

Q-learning,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence, ser.

AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 2094–2100.

[265] D. Yi, X. Zhou, Y. Wen, and R. Tan, “Efficient Compute-Intensive Job Allocation in

Data Centers via Deep Reinforcement Learning,” IEEE Transactions on Parallel and

Distributed Systems, vol. 31, no. 6, pp. 1474–1485, Jun. 2020.

[266] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A Distributed Deep Reinforce-

ment Learning Technique for Application Placement in Edge and Fog Computing

Environments,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[267] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining Improvements

in Deep Reinforcement Learning,” Oct. 2017, arXiv:1710.02298 [cs]. [Online].

Available: http://arxiv.org/abs/1710.02298

250

https://www.industry.gov.au/publications/national-quantum-strategy
http://arxiv.org/abs/2310.03011
http://arxiv.org/abs/1710.02298


Conclusions and Future Directions BIBLIOGRAPHY

[268] Z. Chen, J. Hu, G. Min, C. Luo, and T. El-Ghazawi, “Adaptive and Efficient Re-

source Allocation in Cloud Datacenters Using Actor-Critic Deep Reinforcement

Learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.

1911–1923, Aug. 2022.

[269] R. Kaewpuang, M. Xu, D. Niyato, H. Yu, Z. Xiong, and J. Kang, “Stochastic qubit

resource allocation for quantum cloud computing,” in NOMS 2023-2023 IEEE/IFIP

Network Operations and Management Symposium. Miami, FL, USA: IEEE, May 2023,

pp. 1–5.

[270] N. Ngoenriang, M. Xu, S. Supittayapornpong, D. Niyato, H. Yu, Xuemin,

and Shen, “Optimal stochastic resource allocation for distributed quantum

computing,” Sep. 2022, arXiv:2210.02886 [cs]. [Online]. Available: http:

//arxiv.org/abs/2210.02886

[271] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Has-

sabis, “Human-level control through deep reinforcement learning,” Nature, vol.

518, no. 7540, pp. 529–533, Feb. 2015.

[272] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” Dec. 2013,

arXiv:1312.5602 [cs]. [Online]. Available: http://arxiv.org/abs/1312.5602

[273] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Yang,

M. I. Jordan, and I. Stoica, “Ray: a distributed framework for emerging AI appli-

cations,” in Proceedings of the 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), Carlsbad, CA, USA, Oct. 2018, pp. 561–577.

[274] K. De Asis, J. F. Hernandez-Garcia, G. Z. Holland, and R. S. Sutton, “Multi-step

reinforcement learning: a unifying algorithm,” in Proceedings of the 32nd AAAI

Conference on Artificial Intelligence and 30th Innovative Applications of Artificial In-

telligence Conference and 8th AAAI Symposium on Educational Advances in Artificial

Intelligence. New Orleans, Louisiana, USA: AAAI Press, 2018.

251

http://arxiv.org/abs/2210.02886
http://arxiv.org/abs/2210.02886
http://arxiv.org/abs/1312.5602


BIBLIOGRAPHY Conclusions and Future Directions

[275] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on re-

inforcement learning,” in Proceedings of the 34th International Conference on Machine

Learning - Volume 70, ser. ICML’17. Sydney, NSW, Australia: JMLR, 2017, pp.

449–458.

[276] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” in

Proceedings of the 4th International Conference on Learning Representations, ICLR 2016,

San Juan, Puerto Rico, 2016.

[277] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy networks

for exploration,” in Proceedings of the 6th International Conference on Learning Repre-

sentations, ICLR 2018, Vancouver, Canada, 2018.

[278] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune:

a research platform for distributed model selection and training,” in ICML 2018

AutoML Workshop. Stockholm, Sweden: PMLR, Jul. 2018, arXiv:1807.05118 [cs].

[279] H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aharoni, I. Y. Akhalwaya,

G. Aleksandrowicz, T. Alexander, M. Amy, S. Anagolum, E. Arbel, A. Asfaw,

A. Athalye, A. Avkhadiev, C. Azaustre, and et al., “Qiskit: An Open-

source Framework for Quantum Computing,” 2021. [Online]. Available:

https://github.com/Qiskit

[280] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E. Gonzalez,

M. I. Jordan, and I. Stoica, “RLlib: abstractions for distributed reinforcement learn-

ing,” in Proceedings of the 35th International Conference on Machine Learning, vol. 80.

Stockholm, Sweden: PMLR, 2018.

[281] Y. Fan, B. Li, D. Favorite, N. Singh, T. Childers, P. Rich, W. Allcock, M. E. Papka,

and Z. Lan, “DRAS: Deep Reinforcement Learning for Cluster Scheduling in High

Performance Computing,” IEEE Transactions on Parallel and Distributed Systems,

vol. 33, no. 12, pp. 4903–4917, Dec. 2022.

252

https://github.com/Qiskit


Conclusions and Future Directions BIBLIOGRAPHY

[282] C. Portmann and R. Renner, “Security in quantum cryptography,” Reviews of Mod-

ern Physics, vol. 94, no. 2, Jun. 2022.

[283] N. Saurabh, S. Jha, and A. Luckow, “A Conceptual Architecture for a Quantum-

HPC Middleware,” in 2023 IEEE International Conference on Quantum Software

(QSW). Chicago, IL, USA: IEEE, Jul. 2023, pp. 116–127.

[284] T. Beck, A. Baroni, R. Bennink, G. Buchs, E. A. C. Pérez, M. Eisenbach, R. F.
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